
 Steamworks Extension

This section is for those users that have been given access to the Steam API for publishing

your game to that platform. To be able to use these functions you must have been

accepted onto Steam previously, either through a publisher or through the self-publishing

system.

Guides

This sections provides a variety of important guides to get you started using the extension:

Setup Guide

Migration Changes (what changed from the builtin Steam functionality)

Management

This extension provides the following management functions:

steam_init (automatically called by the extension itself)

steam_update REQUIRED

steam_shutdown (automatically called by the extension itself)

•

•

•

•

•

 Modules

There are a great number of different functions related to the Steam API. We've split them

up into the following sections to make it easier to navigate:

General Steam API

The Steam Overlay

Leaderboards

Achievements And Statistics

Steam Cloud

DLC (Downloadable Content)

UGC (User Generated Content)

•

•

•

•

•

•

•

 Setup Guide

To use the Steam API extension you should follow these steps:

Steam app needs to be installed, running and with an account logged in (official

site).
1.

Download Steamworks SDK (1.53a) from Steam's partner site and extract the

contents of the zip into a directory of your choice (e.g.: C:\steamworks\sdk).
2.

Check your and move included files into your project's

root folder next to your file.
3. <projectFolder>\datafiles

.ypp

https://store.steampowered.com/
https://partner.steamgames.com/dashboard

NOTE Depending on the version of the extension (v1.0.10 and

newer) file might not be present since it is not required anymore, if

that is the case just ignore this file.

run.sh

Go into your and open (if you are on Windows)

or (if you are on macOS) with a text editor and replace all the

text after the symbol with the path to the SDK installed in step 2.

Windows

MacOS and Linux

4. <projectFolder> post_build_step.bat

post_build_step.sh

=

To setup your AppID and environment status, double click the

Steamworks extension on your asset browser in the IDE.
5.

Here you can see the Files section. Double click on Steamworks.dll.6.

NOTE If you set Debug key to this will force your app to be launched by the

Steam launcher. This should only be used when you are ready to send your app to

production.

Now open the Macros window, and look for

the macro (it is defined as a struct). Here you can

configure your AppID and set your development status with the Debug key.

7.
PreGraphicsInitialisationArgument

You are now ready to use the extension in your Steam project.8.

false

 Migration Changes

During the migration of the Steamworks function library from the base GameMaker

runner into this extension, there were some new functions that were added, and others

that were slightly changed. This document covers the changes that happened during that

migration.

Changed Functions

These are the functions that changed:

steam_create_leaderboard

This function is now asynchronous, meaning it will return an Async request ID that

should be used inside a Steam Async Event to check when the task is finished.

New Functions

These are the new functions that were added to the Steam extension:

steam_update REQUIRED

steam_is_subscribed

steam_set_warning_message_hook

steam_upload_score_ext

steam_upload_score_buffer_ext

steam_ugc_delete_item

•

•

•

•

•

•

•

https://manual-en.yoyogames.com/The_Asset_Editors/Object_Properties/Async_Events/Steam.htm

 steam_init

This function initialises the steam APIs.

NOTE This function is already configured to be called at Game Start by the extension,

and should not be called from your game code.

steam_init();

N/A

Syntax:

Returns:

 steam_update

This function updates the steam APIs.

IMPORTANT This function is required to be called in order for the Steamworks extension

to work. We recommend you place this function in a persistent controller object that

calls it inside its Step Event.

steam_update();

N/A

steam_update();

The above code will update the steam APIs.

Syntax:

Returns:

Example:

 steam_shutdown

This function shuts down the Steamworks API, releases pointers and frees memory.

NOTE This function is already configured to be called at Game End by the extension,

and should not be called from your game code.

steam_shutdown();

N/A

Syntax:

Returns:

 General

The following set of functions are all for checking the availability of certain aspects of the

Steam client or server API. This means that these functions should be used before any

other Steam API function call to ensure that the client/server setup is correct and

communicating with your game:

steam_initialised

steam_stats_ready

steam_get_app_id

steam_get_user_account_id

steam_get_user_steam_id

steam_get_persona_name

steam_get_user_persona_name

steam_is_user_logged_on

steam_current_game_language

steam_available_languages

steam_is_subscribed

steam_set_warning_message_hook

•

•

•

•

•

•

•

•

•

•

•

•

 steam_initialised

When using the Steam API, this function can be called to check that the Steam client API

has been initialised correctly before any doing any further calls to Steam specific functions

in your game.

steam_initialised();

Bool

global.steam_api = false;
if (steam_initialised())
{
 if (steam_stats_ready() && steam_is_overlay_enabled())
 {
 global.steam_api = true;
 }
}

The above code will set a global variable to true if the Steam client API is correctly

initialised, along with the Steam statistics and overlay functionality, or it will set the

variable to false otherwise.

Syntax:

Returns:

Example:

 steam_stats_ready

When using the Steam API, this function can be called to check that the Steam client API

has correctly initialised the statistics for your game.

steam_stats_ready();

Bool

global.steam_api = false;
if steam_initialised()
{
 if steam_stats_ready() && steam_is_overlay_enabled()
 {
 global.steam_api = true;
 }
}

The above code will set a global variable to true if the Steam client API is correctly

initialised, along with the Steam statistics and overlay functionality, or it will set the

variable to false otherwise.

Syntax:

Returns:

Example:

 steam_get_app_id

This function is used retrieve the unique app ID that Steam assigns for your game, which is

required for using some of the User Generated Content functions.

steam_get_app_id();

Real

global.app_id = steam_get_app_id();

The above code gets the unique app ID for your game on Steam and stores it in a global

variable.

Syntax:

Returns:

Example:

 steam_get_user_account_id

This function is used retrieve the unique User ID that Steam assigns to each user, which is

required for using some of the User Generated Content functions.

steam_get_user_account_id();

Real

global.user_id = steam_get_user_account_id();

The above code gets the unique user ID for the person who owns the game and stores it

in a global variable.

Syntax:

Returns:

Example:

 steam_get_user_steam_id

You can use this function to return the unique Steam user id of the user currently logged

into the Steam client. If you need to get the user's on screen user name you should refer

to the function steam_get_persona_name.

steam_get_user_steam_id();

int64

if steam_initialised()
{
 global.u_id = steam_get_user_steam_id();
}

The above code will set a global variable to the current users unique Steam ID if the Steam

client API is correctly initialised.

Syntax:

Returns:

Example:

 steam_get_persona_name

You can use this function to return the user name of the user currently logged into the

Steam client. This is the visible screen name and not the unique user id (this can be found

using the function steam_get_user_steam_id).

steam_get_persona_name();

String

if steam_initialised()
{
 global.p_name = steam_get_persona_name();
}

The above code will set a global variable to current users screen name if the Steam client

API is correctly initialised.

Syntax:

Returns:

Example:

 steam_get_user_persona_name

This function can be used to retrieve the user name (screen name) for any specific user

ID.

This is an asynchronous function that will return an asynchronous id and trigger the

Steam Async Event when the task is finished.

steam_get_user_persona_name(steamID);

Argument Description

steamID The unique Steam ID for a user.

Real

Asynchronous Steam Event

async_load Contents

Key Type Description

id real The asynchronous request ID

event_type string The string value

steamid int64
The unique user id of the user currently

logged into the Steam client

persona_name string
The visible screen name of the user

currently logged into the Steam client

Syntax:

Returns:

Triggers:

"user_persona_name"

Example:

https://manual-en.yoyogames.com/The_Asset_Editors/Object_Properties/Async_Events/Steam.htm

 request = steam_get_user_persona_name(global.UGC_UserID);

The above code will request the user name of the user ID stored in the global variable

"UGC_UserID", storing the returned value in a variable for parsing in the Async Event.

 steam_is_user_logged_on

This function will return if the Steam client currently has a live connection to the

Steam servers. If it returns , it means there is no active connection due to either a

networking issue on the local machine, or the Steam server being down or busy.

steam_is_user_logged_on();

Bool

if (steam_is_user_logged_on())
{
 global.user_id = steam_get_user_account_id();
}

The above code will check to see if the user is logged onto the Steam server and if it stores

the user ID in a global variable.

true

false

Syntax:

Returns:

Example:

 steam_current_game_language

This function is used retrieve the current language that Steam is using (as a string), for

example "english".

steam_current_game_language();

String

language = steam_current_game_language();

The above code gets the language used for the current game.

Syntax:

Returns:

Example:

 steam_available_languages

This function can be used to retrieve a list of all available languages for Steam. The

returned value is simply a a comma separated list of languages.

steam_available_languages();

String

language = steam_available_languages();

The above gets the available languages for Steam as a string and stores it in a variable.

Syntax:

Returns:

Example:

 steam_is_subscribed

This function checks if the active user is subscribed to the current App ID.

NOTE This will always return if you're using Steam DRM.

steam_is_subscribed();

Bool

if (steam_is_subscribed())
{
 show_debug_message("is_subscribed")
}

The above code will check to see if the user is logged onto the Steam server and if it stores

the user ID in a global variable.

true

Syntax:

Returns:

Example:

 steam_set_warning_message_hook

This function sets a warning message hook to receive SteamAPI warnings and info

messages in the console.

steam_set_warning_message_hook();

N/A

steam_set_warning_message_hook();

The above code start Steamworks logging messages in console.

Syntax:

Returns:

Example:

 Overlay

The Steam Overlay is the visual display that can be brought up to display the Steam

interface to the user. This is normally done by the user themselves using a combination of

keys, but you also have the possibility of doing it from within your game, so that you can

map a button or an event to show the overlay.

Functions

The extension provides you with the following functions:

steam_is_overlay_enabled

steam_is_overlay_activated

steam_activate_overlay

steam_activate_overlay_browser

steam_activate_overlay_store

steam_activate_overlay_user

Constants

This section also provides the following constants to use with the functions:

OverlayType

•

•

•

•

•

•

•

 steam_is_overlay_enabled

When using the Steam API, this function can be called to check that the Steam client API

has the overlay functionality enabled.

steam_is_overlay_enabled();

Bool

global.steam_api = false;
if steam_initialised()
{
 if steam_stats_ready() && steam_is_overlay_enabled()
 {
 global.steamapi = true;
 }
}

The above code will set a global variable to if the Steam client API is correctly

initialized, along with the Steam statistics and overlay functionality, or it will set the

variable to otherwise.

Syntax:

Returns:

Example:

true

false

 steam_is_overlay_activated

This function can be used to find out if the user has the Steam Overlay active or not. If the

overlay is active and visible to the user the function will return , and if it is not, then it

will return . An example of what this function can be used for would be for polling

the Steam API for the overlay so that you can pause your game while the overlay is being

shown.

steam_is_overlay_activated();

Bool

if steam_is_overlay_activated()
{
 global.Pause = true;
}

The above code will check to see if the Steam overlay is active and if it is it will set the

global variable "Pause" to true.

true

false

Syntax:

Returns:

Example:

 steam_activate_overlay

The Steam overlay is a piece of the Steam user interface that can be activated over the top

of almost any game launched through Steam. It lets the user access their friends list, web

browser, chat, and in-game DLC purchasing. The default key for a user to access the

overlay while in a game is SHIFT + TAB, but you can also bring up any page of the overlay

using this function. It takes one of six constants that are listed below:

steam_activate_overlay(overlay_type);

Argument Type Description

overlay_type constant.OverlayType

The page index of the Steam

API UI to show (see

OverlayType constants).

N/A

var key = keyboard_lastkey;
switch (key)
{
 case vk_f1: steam_activate_overlay(ov_friends); break;
 case vk_f2: steam_activate_overlay(ov_community); break;
 case vk_f3: steam_activate_overlay(ov_players); break;
 case vk_f4: steam_activate_overlay(ov_settings); break;
 case vk_f5: steam_activate_overlay(ov_gamegroup); break;
 case vk_f6: steam_activate_overlay(ov_achievements); break;
}

The above code polls the last keyboard key pressed and if it is any of the function keys

from 1 to 6 it will open the corresponding page of the Steam overlay.

Syntax:

Returns:

Example:

 steam_activate_overlay_browser

With this function you can open the Steam game overlay to its web browser and then have

it load the specified URL. you need to use the full URL as a string for this to resolve

correctly, for example: .

steam_activate_overlay(url);

Argument Type Description

url string The (full) URL for the overlay to open.

N/A

if keyboard_check_pressed(vk_f1)
{
 steam_activate_overlay_browser("http://www.steamgames.com/");
}

The above code polls the keyboard for the F1 key and if it is then Steam overlay will be

opened and resolve to the given URL.

"http://www.steamgames.com/"

Syntax:

Returns:

Example:

 steam_activate_overlay_store

With this function you can open the Steam overlay on the store page for a game so that

users can buy or download DLC (for example). You need to supply the unique App ID for

the game or DLC which you would get from the Steam dashboard when you set it up.

steam_activate_overlay_store(app_id);

Argument Type Description

app_id integer The unique App ID for your game.

N/A

if keyboard_check_pressed(vk_f1)
{
 steam_activate_overlay_store(global.DLC_id);
}

The above code polls the keyboard for the F1 key and if it is then Steam overlay will be

opened on the page for the game content using the app ID stored in the global variable.

Syntax:

Returns:

Example:

 steam_activate_overlay_user

This function will open the Steam overlay to one of the chosen dialogues relating to the

user ID given.

Note that Steam IDs can be large numbers and so you may need to cast your ID value as

an int64() before supplying it to the function.

steam_activate_overlay_user(dialog_name, steamid);

Argument Type Description

dialog_name string
The dialogue to open the overlay on (see

below).

steamid int64 The Steam user ID or group ID to use.

Dialog Names Description

Opens the Steam Community web browser to the page of

the user or group

Opens a chat window to the specified user

N/A

var key = keyboard_lastkey;
switch (key)
{
 case vk_f1: steam_activate_overlay_user("steamid", global.GameGroupID); break;

Syntax:

"steamid"

"chat"

Returns:

Example:

 case vk_f2: steam_activate_overlay_user("chat", global.FriendID); break;
}

The above code polls the last keyboard key pressed and if it is function key 1 or function

key 2, it will open the Steam overlay to either see the Steam group stored in the global

variable "GamegroupID", or it will open the chat window to chat with the user stored in the

global "FriendID" variable.

 Overlay Type

These constants specify the type of overlay to be activated when using the function

steam_activate_overlay.

Overlay Type

Constant
Description

The friends page for the current user

The community page for your game

The page showing others that are playing the

same game or that you have recently played with

The Steam client overlay settings

Opens the Steam Community web browser to the

official game group for this game

The achievements page for your game

ov_friends

ov_community

ov_players

ov_settings

ov_gamegroup

ov_achievements

 Leaderboards

The Steam API supports persistent leaderboards with automatically ordered entries. These

leaderboards can be used to display global and friend leaderboards in your game and on

the community web page for your game. Each game can have up to 10,000 leaderboards,

and each leaderboard can be retrieved immediately after a player's score has been

inserted into it, but note that for each leaderboard, a player can have only one entry,

although there is no limit on the number of players per leaderboard.

Functions

Each leaderboard entry contains a name, a score and a rank for the leaderboard, and this

data will be replaced when a new leaderboard entry is created for the user, and the

following functions can be used to add and retrieve this data form the leaderboards for

your game:

steam_create_leaderboard

steam_upload_score

steam_upload_score_ext

steam_upload_score_buffer

steam_upload_score_buffer_ext

steam_download_scores

steam_download_scores_around_user

steam_download_friends_scores

Data Types

The following data types are used by the leaderboard functions:

LeaderboardEntry

•

•

•

•

•

•

•

•

•

 Constants

The following constants are used by the leaderboard functions:

LeaderboardDisplayType

LeaderboardSortOrder

•

•

 steam_create_leaderboard

With this function you can create a new leaderboard for your game. The first argument is

a string which defines the name of your leaderboard, and this name should be used in any

further function calls relating to the leaderboard being created. You can then define the

sort order (see LeaderboardSortOrder constants) as well as the way in which the

information is displayed (see LeaderboardDisplayType constants).

This is an asynchronous function that will trigger the Steam Async Event when the task

is finished.

NOTE If you have previously created a leaderboard with the same name (either through

code or through your Steam page for the game) this function will not create a new one.

steam_create_leaderboard(lb_name, sort_oder, display_type);

Argument Type Description

lb_name string

The name of the

leaderboard that you are

creating.

sort_oder
LeaderboardSortOrder

constant

The method for sorting the

leaderboard entries (see

LeaderboardSortOrder constants).

display_type
LeaderboardDisplayType

constant

The way to display the

leaderboard to the user (see

LeaderboardDisplayType constants).

Real

Syntax:

Returns:

Triggers:

https://manual-en.yoyogames.com/The_Asset_Editors/Object_Properties/Async_Events/Steam.htm

 Asynchronous Steam Event

async_load Contents

Key Type Description

id real The asynchronous request ID

event_type string The string value

status real
The status code, if the leaderboard was

create and if it already existed

0

1

lb_name string The name of the leaderboard

steam_create_leaderboard("Game Times", lb_sort_ascending, lb_disp_time_sec);

The above code will create a leaderboard called "Game Times", and set it to display the

results in ascending order and with a display in seconds.

"create_leaderboard"

Example:

 steam_upload_score

This function will send a score to the given leaderboard. The score to be uploaded is a real

number, and the leaderboard name is a string that was defined when you created the

leaderboard using the function steam_create_leaderboard.

This is an asynchronous function that will trigger the Steam Async Event when the task

is finished.

NOTE If the function call fails for any reason it will return -1 and the Async event will not

be triggered.

steam_upload_score(lb_name, score);

Argument Type Description

lb_name string
The name of the leaderboard that you are

uploading the scores to.

score real The score to upload.

Real

Asynchronous Steam Event

async_load Contents

Key Type Description

post_id real The asynchronous request ID

event_type string The string value

Syntax:

Returns:

Triggers:

"leaderboard_upload"

https://manual-en.yoyogames.com/The_Asset_Editors/Object_Properties/Async_Events/Steam.htm

 lb_name string The name of the leaderboard

num_entries real The number of returned entries

success bool Whether or not the request was successful

updated bool
Whether or not the leaderboard was

updated (ie: the new score was better)

score real
The score that was posted to the

leaderboard

In this example, we first upload a score and then parse the async_load map returned if

successful. The code below shows a typical example for uploading:

if (hp <= 0)
{
 upload_ID = steam_upload_score("Game Scores", score);
 if (!upload_ID)
 {
 alarm[0] = room_speed;
 }
}

Note that we have set an alarm if the call fails. This would be used to try the upload again

at a later time and you can add extra code there to retry the upload or to save the score to

a text file should it continue to fail, etc... We now add the following into the Steam Async

Event for the instance controlling the scores:

var type = ds_map_find_value(async_load, "event_type");
if (type == "leaderboard_upload")
{
 var lb_ID = ds_map_find_value(async_load, "post_id");
 if lb_ID == upload_ID
 {
 var lb_name = ds_map_find_value(async_load, "lb_name");
 var lb_done = ds_map_find_value(async_load, "success");
 var lb_score = ds_map_find_value(async_load, "score");
 var lb_updated = ds_map_find_value(async_load, "updated");
 show_debug_message("leaderboard post id:" + string(lb_ID) + " to lb:" +
string(lb_name) + " with score:" + string(lb_score) + " updated=" +
string(lb_updated));
 if (lb_done)
 {
 show_debug_message("- Succeeded");
 }
 else
 {
 show_debug_message("- Failed");
 }

Extended Example:

https://manual-en.yoyogames.com/The_Asset_Editors/Object_Properties/Async_Events/Steam.htm

 }
}

in the example we are simply outputting the return values to the compiler window as

debug messages, but you can use this event to deal with the information in any way you

choose.

 steam_upload_score_ext

This function will send a score to the given leaderboard. It is similar to the

function steam_upload_score but has an extra argument that will allow you to force the

update of the score, as by default Steam only updates the score if it is better than the

previous one.

This is an asynchronous function that will trigger the Steam Async Event when the task

is finished.

NOTE If the function call fails for any reason it will return -1 and the Async event will not

be triggered.

steam_upload_score(lb_name, score);

Argument Type Description

lb_name string
The name of the leaderboard that you are

uploading the scores to.

score real The score to upload.

forceUpdate bool Whether or not the value should be replaced.

Real

Asynchronous Steam Event

async_load Contents

Key Type Description

Syntax:

Returns:

Triggers:

https://manual-en.yoyogames.com/The_Asset_Editors/Object_Properties/Async_Events/Steam.htm

 post_id real The asynchronous request ID

event_type string The string value

lb_name string The name of the leaderboard

num_entries real The number of returned entries

success bool Whether or not the request was successful

updated bool

Whether or not the leaderboard was

updated (ie: the new score was better or

 was set to)

score real
The score that was posted to the

leaderboard

In this example, we first upload a score and then parse the async_load map returned if

successful. The code below shows a typical example for uploading:

if (hp <= 0)
{
 upload_ID = steam_upload_score("Game Scores", score, true);
 if (!upload_ID)
 {
 alarm[0] = room_speed;
 }
}

Note that we have set an alarm if the call fails. This would be used to try the upload again

at a later time and you can add extra code there to retry the upload or to save the score to

a text file should it continue to fail, etc... We now add the following into the Steam Async

Event for the instance controlling the scores:

var type = ds_map_find_value(async_load, "event_type");
if (type == "leaderboard_upload")
{
 var lb_ID = ds_map_find_value(async_load, "post_id");
 if lb_ID == upload_ID
 {
 var lb_name = ds_map_find_value(async_load, "lb_name");
 var lb_done = ds_map_find_value(async_load, "success");
 var lb_score = ds_map_find_value(async_load, "score");
 var lb_updated = ds_map_find_value(async_load, "updated");
 show_debug_message("leaderboard post id:" + string(lb_ID) + " to lb:" +
string(lb_name) + " with score:" + string(lb_score) + " updated=" +
string(lb_updated));
 if (lb_done)
 {
 show_debug_message("- Succeeded");

"leaderboard_upload"

forceUpdate true

Extended Example:

https://manual-en.yoyogames.com/The_Asset_Editors/Object_Properties/Async_Events/Steam.htm

 }
 else
 {
 show_debug_message("- Failed");
 }
 }
}

in the example we are simply outputting the return values to the compiler window as

debug messages, but you can use this event to deal with the information in any way you

choose.

 steam_upload_score_buffer

This function will send a score to the given leaderboard along with a data package created

from a buffer. The buffer should be no more than 256 bytes in size - anything beyond that

will be chopped off - and can contain any data you require. The score to be uploaded

should be a real number, and the leaderboard name is a string that was defined when you

created the leaderboard using the function steam_create_leaderboard.

This is an asynchronous function that will trigger the Steam Async Event when the task

is finished.

NOTE If the function call fails for any reason it will return -1 and the Async event will not

be triggered.

steam_upload_score_buffer(lb_name, score, buffer);

Argument Type Description

lb_name string
The name of the leaderboard that you are

uploading the scores to.

score real The score to upload.

buffer id.buffer The ID of the buffer to attach.

Real

Asynchronous Steam Event

async_load Contents

Syntax:

Returns:

Triggers:

https://manual-en.yoyogames.com/The_Asset_Editors/Object_Properties/Async_Events/Steam.htm

 Key Type Description

post_id real The asynchronous request ID

event_type string The string value

lb_name string The name of the leaderboard

num_entries real The number of returned entries

success bool Whether or not the request was successful

updated bool

Whether or not the leaderboard was

updated (ie: the new score was better). Note

that if you score was not updated neither

will be the data buffer.

score real
The score that was posted to the

leaderboard

In this example, we first upload a score and then parse the async_load map returned if

successful. The code below shows a typical example for uploading, with a buffer being

created to hold a string telling us which level the score was uploaded from:

if (hp <= 0)
{
 var buff = buffer_create(256, buffer_fixed, 1);
 buffer_write(buff, buffer_string, "Uploaded on level " + string(global.Level));
 upload_ID = steam_upload_score("Game Scores", score, buff);
 if (!upload_ID)
 {
 alarm[0] = room_speed;
 }
 buffer_delete(buff);
}

Note that we have set an alarm if the call fails. This would be used to try the upload again

at a later time and you can add extra code there to retry the upload or to save the score to

a text file should it continue to fail, etc... Also note that we immediately delete the buffer,

since it is no longer required for the function. We now add the following into the Steam

Async Event for the instance controlling the scores:

var type = ds_map_find_value(async_load, "event_type");
if (type == "leaderboard_upload")
{
 var lb_ID = ds_map_find_value(async_load, "post_id");
 if lb_ID == upload_ID
 {

"leaderboard_upload"

Extended Example:

https://manual-en.yoyogames.com/The_Asset_Editors/Object_Properties/Async_Events/Steam.htm

 var lb_name = ds_map_find_value(async_load, "lb_name");
 var lb_done = ds_map_find_value(async_load, "success");
 var lb_score = ds_map_find_value(async_load, "score");
 var lb_updated = ds_map_find_value(async_load, "updated");
 show_debug_message("leaderboard post id:" + string(lb_ID) + " to lb:" +
string(lb_name) + " with score:" + string(lb_score) + " updated=" +
string(lb_updated));
 if (lb_done)
 {
 show_debug_message("- Succeeded");
 }
 else
 {
 show_debug_message("- Failed");
 }
 }
}

In the example we are simply outputting the return values to the compiler window as

debug messages, but you can use this event to deal with the information in any way you

choose.

 steam_upload_score_buffer_ext

This function will send a score to the given leaderboard along with a data package created

from a buffer. The buffer should be no more than 256 bytes in size - anything beyond that

will be chopped off - and can contain any data you require. This function is similar

to steam_upload_score_buffer but has an extra argument that will allow you to force the

update of the score, as by default Steam only updates the score if it is better than the

previous one.

This is an asynchronous function that will trigger the Steam Async Event when the task

is finished.

NOTE If the function call fails for any reason it will return -1 and the Async event will not

be triggered.

steam_upload_score_buffer(lb_name, score, buffer);

Argument Type Description

lb_name string
The name of the leaderboard that you are

uploading the scores to.

score real The score to upload.

buffer id.buffer The ID of the buffer to attach.

Real

Asynchronous Steam Event

Syntax:

Returns:

Triggers:

https://manual-en.yoyogames.com/The_Asset_Editors/Object_Properties/Async_Events/Steam.htm

 async_load Contents

Key Type Description

post_id real The asynchronous request ID

event_type string The string value

lb_name string The name of the leaderboard

num_entries real The number of returned entries

success bool Whether or not the request was successful

updated bool

Whether or not the leaderboard was

updated (ie: the new score was better or

 was set to). Note that if

you score was not updated neither will be

the data buffer.

score real
The score that was posted to the

leaderboard

In this example, we first upload a score and then parse the async_load map returned if

successful. The code below shows a typical example for uploading, with a buffer being

created to hold a string telling us which level the score was uploaded from:

if (hp <= 0)
{
 var buff = buffer_create(256, buffer_fixed, 1);
 buffer_write(buff, buffer_string, "Uploaded on level " + string(global.Level));
 upload_ID = steam_upload_score_ext("Game Scores", score, buff, true);
 if (!upload_ID)
 {
 alarm[0] = room_speed;
 }
 buffer_delete(buff);
}

Note that we have set an alarm if the call fails. This would be used to try the upload again

at a later time and you can add extra code there to retry the upload or to save the score to

a text file should it continue to fail, etc... Also note that we immediately delete the buffer,

since it is no longer required for the function. We now add the following into the Steam

Async Event for the instance controlling the scores:

"leaderboard_upload"

forceUpdate true

Extended Example:

https://manual-en.yoyogames.com/The_Asset_Editors/Object_Properties/Async_Events/Steam.htm

 var type = ds_map_find_value(async_load, "event_type");
if (type == "leaderboard_upload")
{
 var lb_ID = ds_map_find_value(async_load, "post_id");
 if lb_ID == upload_ID
 {
 var lb_name = ds_map_find_value(async_load, "lb_name");
 var lb_done = ds_map_find_value(async_load, "success");
 var lb_score = ds_map_find_value(async_load, "score");
 var lb_updated = ds_map_find_value(async_load, "updated");
 show_debug_message("leaderboard post id:" + string(lb_ID) + " to lb:" +
string(lb_name) + " with score:" + string(lb_score) + " updated=" +
string(lb_updated));
 if (lb_done)
 {
 show_debug_message("- Succeeded");
 }
 else
 {
 show_debug_message("- Failed");
 }
 }
}

In the example we are simply outputting the return values to the compiler window as

debug messages, but you can use this event to deal with the information in any way you

choose.

 steam_download_scores

This function is used retrieve a sequential range of leaderboard entries by leaderboard

ranking. The and parameters control the requested range of ranks, for

example, you can display the top 10 on a leaderboard for your game by setting the start

value to 1 and the end value to 10. The leaderboard name is a string that was defined

when you created the leaderboard using the function steam_create_leaderboard.

This is an asynchronous function that will trigger the Steam Async Event when the task

is finished.

NOTE If the function call fails for any reason it will return -1 and the async event will not

be triggered.

steam_download_scores(lb_name, start_idx, end_idx);

Argument Type Description

lb_name string
The name of the leaderboard that you are

downloading the scores from.

start_idx integer The start position within the leaderboard.

end_idx integer The end position within the leaderboard.

Real

Asynchronous Steam Event

async_load Contents

start_idx end_idx

Syntax:

Returns:

Triggers:

https://manual-en.yoyogames.com/The_Asset_Editors/Object_Properties/Async_Events/Steam.htm

 Key Type Description

id real The asynchronous request ID

event_type string The string value

status int64 The status code if download fails

lb_name string The name of the leaderboard

num_entries real The number of returned entries

entries string

A json formatted string with all the

downloaded entries (see

LeaderboardEntry for details)

In this extended example we will request the top ten ranking for the given leaderboard

and parse its results in the Steam Async Event. to start with we need to request the scores

with the following code:

score_get = steam_download_scores("Game Scores", 1, 10);

This will send off a request to the Steam Server for the scores from the leaderboard

"Game Scores", storing the async id of the request in the variable "score_get". this will then

be handled in the Steam Async Event in the following way:

var async_id = ds_map_find_value(async_load, "id");
if async_id == score_get
{
 var entries = ds_map_find_value(async_load, "entries");
 var map = json_decode(entries);
 if ds_map_exists(map, "default")
 {
 ds_map_destroy(map);
 exit;
 }
 else
 {
 var list = ds_map_find_value(map, "entries");
 var len = ds_list_size(list);
 var entry;
 for(var i = 0; i < len; i++;)
 {
 entry = ds_list_find_value(list, i);
 steam_name[i] = ds_map_find_value(entry, "name");
 steam_score[i] = ds_map_find_value(entry, "score");
 steam_rank[i] = ds_map_find_value(entry, "rank");
 steam_data[i] = ds_map_find_value(entry, "data");
 }
 }

"leaderboard_download"

Extended Example:

https://manual-en.yoyogames.com/The_Asset_Editors/Object_Properties/Async_Events/Steam.htm

 ds_map_destroy(map)
}

What we do here is first check the "id" key of the special async_load DS map. If this value is

the same as the value of the original call-back function (stored in the "score_get" variable)

we then continue to process the data. The first thing we do is parse the async_load DS map

for the key "entries" which will contain a JSON formatted string containing the leaderboard

data. This JSON object is then decoded (see json_decode) as another DS map, and this new

map id is stored in the variable "map".

This map is checked for the key "default" and if that is found then the map is destroyed

and the event is exited. If no "default" key is found, the code will then parse the map to

extract the necessary information about the leaderboard, by first extracting a DS list from

the "entries" key of the DS map, and then looping through each entry of the list to get

another DS map with the name, score and rank of each entry. These values are then

stored to arrays.

Once the loop has finished, the JSON DS map is destroyed (which in turn destroys all the

internal maps and lists). There is no need to destroy the async_load DS map as this is

handled for you by GameMaker Studio 2.

https://manual-en.yoyogames.com/GameMaker_Language/GML_Overview/Variables/Builtin_Global_Variables/async_load.htm
https://manual-en.yoyogames.com/GameMaker_Language/GML_Reference/File_Handling/Encoding_And_Hashing/json_decode.htm
https://manual.yoyogames.com/GameMaker_Language/GML_Reference/Data_Structures/DS_Maps/DS_Maps.htm
https://manual.yoyogames.com/GameMaker_Language/GML_Reference/Data_Structures/DS_Maps/DS_Maps.htm
https://manual-en.yoyogames.com/GameMaker_Language/GML_Overview/Variables/Builtin_Global_Variables/async_load.htm

 steam_download_scores_around_user

This function is used to retrieve leaderboard entries relative the current users entry. The

 parameter is the number of entries to retrieve before the current users entry,

and the parameter is the number of entries after the current user's entry, and

the current user's entry is always included in the results. For example, if the current user is

number 5 on a given leaderboard, then setting the start range to -2 and the end range to 2

will return 5 entries: 3 through 7. If there are not enough entries in the leaderboard before

or after the user's entry, Steam will adjust the range start and end points trying to

maintained the range size. For example, if the user is #1 on the leaderboard, start is set to

-2, and end is set to 2, Steam will return the first 5 entries in the leaderboard.

This is an asynchronous function that will trigger the Steam Async Event when the task

is finished.

NOTE If the function call fails for any reason it will return -1 and the async event will not

be triggered.

steam_download_scores_around_user(lb_name, range_start, range_end);

Argument Type Description

lb_name string
The name of the leaderboard that you are

downloading the scores from.

range_start integer The start position within the leaderboard.

range_end integer The end position within the leaderboard.

Real

range_start

range_end

Syntax:

Returns:

Triggers:

https://manual-en.yoyogames.com/The_Asset_Editors/Object_Properties/Async_Events/Steam.htm

 Asynchronous Steam Event

async_load Contents

Key Type Description

id real The asynchronous request ID

event_type string The string value

status int64 The status code if download fails

lb_name string The name of the leaderboard

num_entries real The number of returned entries

entries string

A json formatted string with all the

downloaded entries (see

LeaderboardEntry for details)

request_id = steam_download_scores_around_user("Game Scores", -4, 5);

This will send off a request to the Steam Server for a range of 10 scores from the

leaderboard , centered on the player and will store the async id of the

request in the variable . This will then be handled in the Steam Async Event, as

shown in the Extended Example for steam_download_scores.

"leaderboard_download"

Example:

"Game Scores"

request_id

 steam_download_friends_scores

With this function you can retrieve only the scores on the leaderboard that belong to

those people that are marked as "friends" in the Steam client. So, if your leaderboard has

200 entries, and 50 of them are your friends, this function will retrieve only those 50

results. The leaderboard name is a string that was defined when you created the

leaderboard using the function steam_create_leaderboard.

This is an asynchronous function that will trigger the Steam Async Event when the task

is finished.

NOTE If the function call fails for any reason it will return -1 and the async event will not

be triggered.

steam_download_friends_scores(lb_name);

Argument Type Description

lb_name string
The name of the leaderboard that you are

downloading the scores from.

Real

Asynchronous Steam Event

async_load Contents

Key Type Description

id real The asynchronous request ID

Syntax:

Returns:

Triggers:

https://manual-en.yoyogames.com/The_Asset_Editors/Object_Properties/Async_Events/Steam.htm

 event_type string The string value

status int64 The status code if download fails

lb_name string The name of the leaderboard

num_entries real The number of returned entries

entries string

A json formatted string with all the

downloaded entries (see

LeaderboardEntry for details)

request_id = steam_download_friends_scores("Game Scores");

This will send off a request to the Steam Server for the users friends scores from the given

leaderboard and will store the async id of the request in the variable . This will

then be handled in the Steam Async Event, as shown in the Extended Example

for steam_download_scores.

"leaderboard_download"

Example:

request_id

https://manual-en.yoyogames.com/The_Asset_Editors/Object_Properties/Async_Events/Steam.htm

 Leaderboard Entry

A leaderboard entry is represented by a json formatted string that can be returned by the

async callback event of the following functions:

steam_download_scores

steam_download_scores_around_user

steam_download_friends_scores

This string can be decoded into a DS map (see json_decode, needs to be destroyed

afterwards) or into a struct (see json_parse, recommended) and will provide the following

members.

Key Type Description

rank real The rank of the entry on the specified leaderboard

data string

The base64 encoded string with the data provided

when uploading scores using

the steam_upload_score_buffer or steam_upload_score_buffer_ext

OPTIONAL

score real The score attributed to this entry

name string The display name of the player for this entry

userID int64 The unique user id of the player for this entry

NOTE If steam_upload_score_buffer or steam_upload_score_buffer_ext were used to

upload the score, the decoded entry will now have a key so you can retrieve the

data of the uploaded buffer (see the Steam Async Event extended code example for

further details). This data will be base64 encoded and so you will need to use the

function buffer_base64_decode on the data before reading from the buffer.

•

•

•

"data"

https://manual.yoyogames.com/GameMaker_Language/GML_Reference/Data_Structures/DS_Maps/DS_Maps.htm
https://manual-en.yoyogames.com/GameMaker_Language/GML_Reference/File_Handling/Encoding_And_Hashing/json_decode.htm
https://manual-en.yoyogames.com/GameMaker_Language/GML_Overview/Structs.htm
https://manual-en.yoyogames.com/GameMaker_Language/GML_Reference/File_Handling/Encoding_And_Hashing/json_parse.htm
https://manual-en.yoyogames.com/The_Asset_Editors/Object_Properties/Async_Events/Steam.htm
https://manual-en.yoyogames.com/GameMaker_Language/GML_Reference/Buffers/buffer_base64_decode.htm

 Leaderboard Display Type

These constants specify the display type of a leaderboard and should be used with the

function steam_create_leaderboard.

Leaderboard Display Type

Constant
Description

Show the leaderboard "as is".

Show the leaderboard as a numeric

display.

Show the leaderboard values as times,

with the base value being seconds.

Show the leaderboard values as times,

with the base value being milliseconds

lb_disp_none

lb_disp_numeric

lb_disp_time_sec

lb_disp_time_ms

 Leaderboard Sort Order

These constants specify the sort order of a leaderboard and should be used with the

function steam_create_leaderboard.

Leaderboard Sort Order

Constant
Description

No sorting. The information will be

displayed "as is".

Sort the leaderboard in ascending

order.

Sort the leaderboard in descending

order.

lb_sort_none

lb_sort_ascending

lb_sort_descending

 Stats and Achievements

The Steam Stats and Achievements API provides an easy way for your game to provide

persistent, roaming achievement and statistics tracking for your users. The user's data is

associated with their Steam account, and each user's achievements and statistics can be

formatted and displayed in their Steam Community Profile.

NOTE You must wait until steam_stats_ready has returned true, before attempting to read

or write stats and achievements.

Achievements

In addition to providing highly-valued rewards to players of your games, achievements are

useful for encouraging and rewarding teamwork and player interaction, providing extra

dimensionality to the game objectives, and rewarding users for spending more of their

time in-game, and as such it is recommended that your game has a few. They are easily

set up from the Steam Dashboard, but will require that you create special Icons for them.

The following functions are provided for working with achievements:

steam_set_achievement

steam_get_achievement

steam_clear_achievement

Statistics Functions

Statistics track fine-grained pieces of information, such as play time, number of power-ups

used, etc. You may choose to use them simply for tracking internal game data - so that, for

instance, you can grant an achievement based on multi-session game-play statistics

collected from the user across multiple computers. Or, you can track interesting game

data for display on the user's Steam Community page, where users can compare their

own stats against their friends.

•

•

•

 NOTE Previously to being used statistics must be initialized from the Steamworks

control panel for your game.

The following functions are provided for working with statistics:

steam_set_stat_int

steam_set_stat_float

steam_set_stat_avg_rate

steam_get_stat_int

steam_get_stat_float

steam_get_stat_avg_rate

Debug Functions

The following functions are provided for debugging purposes and are not recommended

in the production version of you game:

steam_reset_all_stats

steam_reset_all_stats_achievements

If the user is in Offline Mode, Steam keeps a local cache of the stats and achievement data

so that the APIs can be use as normal. Any stats unable to be committed are saved for the

next time the user is online. In the event that there have been modifications on more than

one machine, Steam will automatically merge achievements and choose the set of stats

that has had more progress. Because Steam keeps a local cache of stats data it is not

necessary for the game to also keep a local cache of the data on disk, especially as such

caches often come in conflict and when they do it looks to a users as if their progress has

been reverted, which is a frustrating experience.

•

•

•

•

•

•

•

•

 steam_set_achievement

With this function you can tell the Steam API to award ("set") an achievement for the

player. These achievements should have been defined on the Steamworks control panel

accounts page for your game and the string that is passed to the function should match

that used as the API Name on the control panel. The Steam Game Overlay will display a

notification panel to the user informing them of the achievement that they have received,

unless the achievement has already been awarded, in which case nothing will happen.

steam_set_achievement(ach_name);

Argument Type Description

ach_name string The name of the achievement to set.

N/A

if hp <= 0
{
 global.Deaths += 1;
 if global.Deaths == 10
 {
 if !steam_get_achievement("ach_Player_Dies_Ten_Times")
steam_set_achievement("ach_Player_Dies_Ten_Times");
 }
}

The above code will reward the player an achievement if the global variable "Deaths" is

equal to 10 and if the achievement has not already been awarded.

Syntax:

Returns:

Example:

 steam_get_achievement

With this function you can check the Steam API to see if a specific achievement has been

awarded. The achievement should have been previously defined on the Steamworks

control panel accounts page for your game and the string that is passed to the function

should match that used as the API Name on the control panel.

steam_get_achievement(ach_name);

Argument Type Description

ach_name string The name of the achievement to get.

Bool

if hp <= 0
{
 global.Deaths += 1;
 if global.Deaths == 10
 {
 if !steam_get_achievement("ach_Player_Dies_Ten_Times")
steam_set_achievement("ach_Player_Dies_Ten_Times");
 }
}

The above code will reward the player an achievement if the global variable "Deaths" is

equal to 10 and if the achievement has not already been awarded.

Syntax:

Returns:

Example:

 steam_clear_achievement

With this function you can tell the Steam API to clear (reset) a specific achievement. The

achievement should have been previously defined on the Steamworks control panel

accounts page for your game and the string that is passed to the function should match

that used as the API Name on the control panel.

steam_clear_achievement(ach_name);

Argument Type Description

ach_name string The name of the achievement to clear.

N/A

if mouse_check_button_pressed(mb_left)
{
 steam_clear_achievement("Ach_Game_Win");
 steam_clear_achievement("Ach_Died_10_Times");
 steam_clear_achievement("Ach_Killed_100_Enemies");
 steam_clear_achievement("Ach_Beat_Boss_Level_1");
}

The above code will reset the achievements of the game when the user clicks the left

mouse button.

Syntax:

Returns:

Example:

 steam_set_stat_int

With this function you can set a specific statistic to a new, signed integer, value. The

statistic should have been previously defined on the Steamworks control panel accounts

page for your game and the string that is passed to the function should match that used

as the API Name on the control panel. Examples of when you could use this are for

tracking how many times the player dies or for tracking progress towards an achievement.

steam_set_stat_int(stat_name, value);

Argument Type Description

stat_name string The name of the statistic to set.

value integer The value to set the stat to.

N/A

xp += 100;
steam_set_stat_int("Total_XP", steam_get_stat_int("Total_XP") + 100);
if steam_get_stat_int("Total_XP") > 1000
{
 if !steam_get_achievement("Ach_1000XP") steam_set_achievement("Ach_1000XP");
}

The above code sets a statistic and then checks the final value for it to decide whether to

award an achievement or not.

Syntax:

Returns:

Example:

 steam_set_stat_float

With this function you can set a specific statistic to a new, floating point, value. The statistic

should have been previously defined on the Steamworks control panel accounts page for

your game and the string that is passed to the function should match that used as the API

Name on the control panel. Examples of when you could use this are for tracking how far

your player has travelled, or what percentage of the game is complete.

steam_set_stat_float(stat_name, value);

Argument Type Description

stat_name string The name of the statistic to set.

value real The value to set the stat to.

N/A

var dist_pc = (dist / dist_max) * 100;
steam_set_stat_float("Travelled", dist_pc);

The above code calculates a percentage based on the distance travelled variable "dist" and

the maximum distance you can travel "dist_max" and then sets the stat "Travelled" to the

new value.

Syntax:

Returns:

Example:

 steam_set_stat_avg_rate

This function permits you to set an average statistic type with a "sliding window" effect on

the average. The "session_count" value is the current value that you wish to average out,

while the "session_length" is the amount of game time since the last call to the function.

Please see the extended Example below for further details on how this can be used.

steam_set_stat_avg_rate(stat_name, session_count, session_length);

Argument Type Description

stat_name string The name of the statistic to set.

session_count real The value to get the average of.

session_length real
The time that has been taken since the last

time the stat was set.

N/A

Since the average stat function can be complex to understand, we will illustrate its use

with the following example. Consider the case where you'd like to track an average

statistic, such as "Points earned per hour". One approach would be to have two stats: an

integer stat, "TotalPoints", and a float stat "TotalPlayTimeHours", and then divide the total

points by the total time to get the "Points per Hour" value.

However, once the player has accumulated a significant amount of playtime, the

calculated average will change extremely slowly, and the more the user plays the game,

the less responsive that average will be. If the user has spent 100 hours playing the game,

the calculated average will "lag" by about 50 hours of that, and if they increase their skill,

they will not see the increase in "Points Per Hour" that they expect. To get around that we

Syntax:

Returns:

Extended Example:

 can use a "sliding window" to only calculate the "Points per hour" for the last 10 hours

played.

So, to use this function, we would need to create a Steam stat (in the control panel for the

game on the Workshop) called "AvgPointsPerHour" and set its Window property to 10.

Now in your game you would have to add some global variables into an instance at the

start:

global.Points = 0;
global.Time = 0;

You would then have some controller object to count up the global "Time" variable in an

alarm (for example) every second, while your game-play would affect the global "Points"

variable. At regular intervals while playing (again, in a controller object, perhaps in an

Alarm, or at intervals from polling the "Time" value) you would set the stat like this:

steam_set_stat_avg_rate("AvgPointsPerHour", global.Points, (global.Time / 3600));
global.Points = 0;
global.Time = 0;

Note that we divide time by 3600 since we want the time in hours and not in seconds, and

afterward we reset the global "Points" variable and the global "Time" variable to 0 so that

the next time the function is called, we get a new average for the statistic. Now, what

Steam will do is take this value that you have sent and create an average value over the

time that was set for our "window".

 steam_get_stat_int

With this function you can get the value of a specific signed integer statistic. The statistic

should have been previously defined on the Steamworks control panel accounts page for

your game and the string that is passed to the function should match that used as the API

Name on the control panel.

steam_get_stat_int(stat_name);

Argument Type Description

stat_name string The name of the statistic to get.

Real

xp += 100;
steam_set_stat_int("Total_XP", steam_get_stat_int("Total_XP") + 100);
if steam_get_stat_int("Total_XP") > 1000
{
 if !steam_get_achievement("Ach_1000XP") steam_set_achievement("Ach_1000XP");
}

The above code sets a statistic and then checks the final value for it to decide whether to

award an achievement or not.

Syntax:

Returns:

Example:

 steam_get_stat_float

With this function you can get the value of a specific floating point statistic. The statistic

should have been previously defined on the Steamworks control panel accounts page for

your game and the string that is passed to the function should match that used as the API

Name on the control panel.

steam_get_stat_float(stat_name);

Argument Type Description

stat_name string The name of the statistic to get.

Real

var dist_pc = (dist / dist_max) * 100;
if steam_get_stat_float("Travelled") < dist_pc
{
 steam_set_stat_int("Travelled", dist_pc);
}

The above code calculates a percentage based on the distance travelled variable "dist" and

the maximum distance you can travel "dist_max". It then polls the current value for the

statistic "Travelled" and if it is less than the calculated value, it sets the stat again.

Syntax:

Returns:

Example:

 steam_get_stat_avg_rate

With this function you can get the value of a specific average statistic. The statistic should

have been previously defined on the Steamworks control panel accounts page for your

game and the string that is passed to the function should match that used as the API

Name on the control panel.

steam_get_stat_avg_rate(stat_name);

Argument Type Description

stat_name string The name of the statistic to get.

Real

var avg = steam_get_stat_avg_rate("PointsPerHour");
draw_text(8, 8, "PPH = " + string(avg);

The above code gets the current value for the average statistic "PointsPerHour" and draws

it on the screen.

Syntax:

Returns:

Example:

 steam_reset_all_stats

With this function you can reset all the statistics for the current user to their default values

(as defined in the Steamworks control panel for your game). If need to also reset the

achievement to their default values use the steam_reset_all_stats_achievements instead.

TIP It is recommended that you only use this function as a debug tool when developing

your game.

steam_reset_all_stats();

N/A

ini_open("Save.ini");
if global.Version != ini_read_real("Data", "Version", 0)
{
 ini_write_real("Data", "Version", global.Version);
 steam_reset_all_stats();
}
ini_close();

The above code checks a stored value in an ini file against that of a global variable and if

they are different, it resets the statistics for the game.

Syntax:

Returns:

Example:

 steam_reset_all_stats_achievements

With this function you can reset all the statistics and achievements for the current user to

their default values (as defined in the Steamworks control panel for your game). If you

only need to reset the stats to their default values use the steam_reset_all_stats instead.

TIP It is recommended that you only use this function as a debug tool when developing

your game.

steam_reset_all_stats_achievements();

N/A

ini_open("Save.ini");
if global.Version != ini_read_real("Data", "Version", 0)
{
 ini_write_real("Data", "Version", global.Version);
 steam_reset_all_stats_achievements();
}
ini_close();

The above code checks a stored value in an ini file against that of a global variable and if

they are different, it resets the statistics and achievements for the game.

Syntax:

Returns:

Example:

 Cloud

The Steam Cloud provides an easy and transparent remote file storage system for your

game. All files written to disk using the cloud functions will be replicated to the Steam

servers after the game exits. If the user then changes computers, the files will then be

downloaded to the new computer before the game launches, meaning that the game can

then access the files by reading them using the appropriate Steam functions. The Steam

Client does the work of ensuring that the files are kept synchronized across all computers

the user may be accessing.

NOTE By default, the Cloud is not enabled for a game on Steamworks. it must be

enabled previously from the 'Cloud' tab of the Steamworks game admin, where you

should set the byte and file quota. The next time you publish your games Steamworks

configuration, the Cloud storage will be ready to use.

The following functions can be used to access the Steam Cloud from within GameMaker

Studio 2

steam_is_cloud_enabled_for_app

steam_is_cloud_enabled_for_account

steam_get_quota_total

steam_get_quota_free

steam_file_exists

steam_file_size

steam_file_persisted

steam_file_write

steam_file_write_file

steam_file_read

steam_file_share

steam_file_delete

•

•

•

•

•

•

•

•

•

•

•

•

 steam_is_cloud_enabled_for_app

With this function you can check to make sure that the Steam Cloud service is enabled for

your game. It will return true if it is and false otherwise.

IMPORTANT This does not automatically mean that you can use the Cloud functions as

the user can switch off Cloud synchronization from their Steam Client. You can check

this using the function steam_is_cloud_enabled_for_account, but, even if it is disabled

for the user (and enabled for the game), the functions will still work to store and retrieve

data from a local copy of all files, it will just not upload them to the cloud on the game

end, nor synchronize on the game start.

steam_is_cloud_enabled_for_app();

Bool

if (steam_is_cloud_enabled_for_app())
{
 quota = steam_get_quota_total();
}

The above code checks to see if the steam cloud is enabled for the game and if so it gets

the size of the storage quota and stores it in a variable.

Syntax:

Returns:

Example:

 steam_is_cloud_enabled_for_account

With this function you can check to make sure that the Steam Cloud service is enabled by

the user in their Steam Client settings. It will return true if it is and false otherwise.

IMPORTANT This does not automatically mean that you can store data to the Cloud, as it

will also have to have been enabled for your game (you can check this using the function

steam_is_cloud_enabled_for_app). If the Steam Cloud is enabled for your game, but the

user has it switched off locally, you can still use the Cloud functions to store and retrieve

data from a local copy of all files, it will just not upload them to the cloud on the game

end, nor synchronize on the game start.

steam_is_cloud_enabled_for_account();

Bool

if (steam_is_cloud_enabled_for_account())
{
 steam_file_share("Save.txt");
}

The above code checks to see if the user has the Steam Cloud enabled and if it returns

true, it will then synchronize the given file.

Syntax:

Returns:

Example:

 steam_get_quota_total

When using the Steam Cloud to store and synchronize files, you must set up the quota of

space that your game will need. This quota is enforced on each Cloud-enabled game, on a

per-user-per-game basis, so, for example, if the quota for Game X is 1 megabyte, then

each Steam account that owns Game X may store, at most, 1 megabyte of data associated

with that game in the Cloud. Any other Cloud-enabled games that the user owns (say,

Game Y) will not be affected by the data stored by Game X. The default quota for new

Steamworks games is one gigabyte, but you can change this from the Steamworks control

panel for your game.

NOTE Once the quota is exhausted file writes will fail. If you think it may be possible for

the quota to be exhausted for the user of your game, you should create code to handle

it, as by doing nothing you leave users in a situation where they are unable to fix things

and that will lead to a poor experience of your game.

steam_get_quota_total();

Real

if (steam_is_cloud_enabled_for_app())
{
 quota = steam_get_quota_total();
}

The above code checks to see if the steam cloud is enabled for the game and if so it gets

the size of the storage quota and stores it in a variable.

Syntax:

Returns:

Example:

 steam_get_quota_free

With this function you can find out how much free space is left for the user of the Steam

Cloud quota. The value returned is in bytes.

steam_get_quota_free();

Real

if (steam_is_cloud_enabled_for_app())
{
 quota = steam_get_quota_free();
}

The above code checks to see if the steam cloud is enabled for the game and if so it gets

the size of the free storage space and stores it in a variable.

Syntax:

Returns:

Example:

 steam_file_exists

With this function you can check to see if a file from the Steam Cloud exists or not, with a

return value of true if it exists, or false otherwise.

steam_file_exists(filename);

Argument Type Description

filename string The name of the file to check for.

Bool

if (steam_file_exists("Save.txt"))
{
 save_str = steam_file_read("Save.txt");
}

The above code checks to see if a file exists on the Steam Cloud and if it does, it opens it

and reads its contents into the variable "save_str".

Syntax:

Returns:

Example:

 steam_file_size

With this function you can check the size of a file stored on the Steam Cloud. The returned

real number is the size, in bytes, of the file.

steam_file_size(filename);

Argument Type Description

filename string The name of the file to check the size of.

Real

file_bytes = steam_file_size("Save.txt");

The above code stores the size of a file from the Steam Cloud in the variable "file_bytes".

Syntax:

Returns:

Example:

 steam_file_persisted

With this function you can check the given file to see if it has been synchronized with the

Steam Cloud. A return value of true means that it is, while false means it is not.

steam_file_persisted(filename);

Argument Type Description

filename string The name of the file to check.

Bool

if (!steam_file_persisted("Save.txt"))
{
 steam_file_share("Save.txt");
}

The above code will check to see if a file has been stored to the Steam Cloud, and if it has

not it will then synchronize it.

Syntax:

Returns:

Example:

 steam_file_write

You can use this function to write data to a file, which will then be synchronized with the

Steam Cloud when the user exits the game. if the file does not exist, this function will

create it for you, and if it does already exists, it will overwrite any data that is already

stored within the file with the new data string. The function will return a value of 0 if it fails

for whatever reason and a value greater than 0 if it succeeds.

steam_file_write(filename, data, size);

Argument Type Description

filename string The name of the file to write to.

data string The data to write (a string).

size integer the size of the data to be written.

Real

var fname = "SaveData.txt";
var data = string(global.Level) + "|" + string(global.Points) + "|" +
string(global.HP);
var len = string_length(data);
steam_file_write_file(fname, data, len);

The above code will prepare a number of local variables and then use them to write to (or

create) a file which will then be synchronized with the Steam Cloud.

Syntax:

Returns:

Example:

 steam_file_write_file

With this function you can copy the contents of a locally saved file to a file that is

synchronized with the Steam Cloud. The local file must exist before using this function,

and it will return a value of 0 if it fails for whatever reason and a value greater than 0 if it

succeeds.

steam_file_write_file(steam_filename, local_filename);

Argument Type Description

steam_filename string The Steam Cloud file to copy over.

local_filename string The local file to use to copy from.

real

steam_file_write_file("rm_koala.png", "Koala2.png");

The above code will copy the contents of the file "Koala2.png" to the Steam Cloud file

"rm_koala.png".

Syntax:

Returns:

Example:

 steam_file_read

This function will read the contents of the given file into a string which can later be parsed

in your game.

steam_file_read(filename);

Argument Type Description

filename string The name of the file to read from.

String

if steam_file_exists("Save.txt")
{
 save_str = steam_file_read("Save.txt");
}

The above code checks to see if a file exists on the Steam Cloud and if it does, it opens it

and reads its contents into the variable "save_str".

Syntax:

Returns:

Example:

 steam_file_share

With this function you can force your game to synchronize the given file with the Steam

Cloud. This is not normally necessary due to the fact that the game will synchronize

automatically at the end of the player's session, nor is it recommended by Steam, but it

can be useful to ensure sensitive information is synchronized immediately. The function

will return a value of 0 if it fails for whatever reason and a value greater than 0 if it

succeeds.

steam_file_share(filename);

Argument Type Description

filename string The name of the file synchronize.

Real

if (!steam_file_persisted("Save.txt"))
{
 steam_file_share("Save.txt");
}

The above code will check to see if a file has been stored to the Steam Cloud, and if it has

not it will then synchronize it.

Syntax:

Returns:

Example:

 steam_file_delete

This function will delete the given file from the Steam Cloud. The function will return a

value of 0 if it fails for whatever reason and a value greater than 0 if it succeeds.

steam_file_delete(filename);

Argument Type Description

filename string The name of the file delete.

Real

if (steam_file_exists("Save.txt"))
{
 steam_file_delete("Save.txt");
}

The above code will check to see if a file exists, and if it does, it deletes the file from the

Steam Cloud.

Syntax:

Returns:

Example:

 DLC

Steam supports both free and paid downloadable content (DLC), and in the Steam client, a

game with downloadable content appears as a single application in the user's game list

with the downloadable content viewable through the games properties dialog. Once

owned, downloadable content is treated as an integral part of the game and Steam will

automatically update the content when a patch is available and installs the content when

the user installs the game.

Since this is all handled by the Steam servers and the configuration of any DLC is done

through the Steamworks control panel, there are only a couple of functions necessary in

GameMaker Studio 2 to check for this extra content:

steam_user_owns_dlc

steam_user_installed_dlc

•

•

 steam_user_owns_dlc

If your game has DLC created for it, you can use this function to check whether the user

has bought it before accessing any files associated with it. The function will return true ()

if the player owns the content, false () if they don't own it or the given DLC ID is

invalid, or if they're not logged into Steam.

NOTE Even if the user owns the DLC it doesn't mean that they have it installed in their

local account, so you should additionally use the function steam_user_installed_dlc to

make sure that it is before using it.

steam_user_owns_dlc(dlc_id);

Argument Type Description

dlc_id int64 The unique identifier for the DLC to be checked.

Integer

global.Level_Max = 100;
if steam_user_owns_dlc(10354)
{
 if steam_user_installed_dlc(10354)
 {
 global.Level_max = 200;
 }
}

The above code will check to see if the user has bought, and installed, the DLC with the id

10354, and if so set a global variable to a different value.

1

0

-1

Syntax:

Returns:

Example:

 steam_user_installed_dlc

If your game has DLC created for it, you can use this function to check and see whether

the user has installed it before accessing any files associated with it. The function returns

true if the player has the content installed, and false if the user does not, but note that

the user must also own the DLC, so you should use the additional function of

steam_user_owns_dlc to check that it is owned as well before using it.

steam_user_installed_dlc(dlc_id);

Argument Type Description

dlc_id int64 The unique identifier for the DLC to be checked.

Bool

global.Level_Max = 100;
if (steam_user_owns_dlc(10354))
{
 if (steam_user_installed_dlc(10354))
 {
 global.Level_max = 200;
 }
}

The above code will check to see if the user has bought, and installed, the DLC with the id

10354, and if so set a global variable to a different value.

Syntax:

Returns:

Example:

 UGC

This section is for those users that have been given access to the Steam API for publishing

your game to that platform and that want to use the possibilities that the Steam

Workshop and Community gives you for adding and generating user content in your

projects. The simplest form of user generated content is the ability for the user to take

and share screenshots, which is facilitated using the following two functions:

steam_is_screenshot_requested

steam_send_screenshot

Before using any of the built in functions for the Steam UGC (User Generated Content) API

you need to have set up your game correctly from the Steam dashboard and you should

have read through the required documentation found here:

Sharing User Generated Content

NOTE You need to have your game accepted for the Steam online store and have access

to the developer areas of the Steam API documentation.

All subscribed UGC items will be downloaded by the Steam client automatically, and you

should have code in the Steam Asynchronous Event to catch this and store the ID of the

UGC that has been downloaded for use in the other UGC functions.

IMPORTANT Steam UGC IDs can be huge numbers This means that sometimes you may

need to store these as a string rather than try and store them as a real value, especially

if working with buffers or trying to write the value to a text file (since this will convert it

to a simplified standard format like "6.6624e+003" which will cause issues being read

back).

The normal workflow for getting UGC into your game would be as follows:

•

•

•

The user would subscribe to an item (either from your game using

steam_ugc_subscribe_item or from the client/browser). If done from the game you

are able to "listen" to the callback from the Steam Async Event.

1.

https://partner.steamgames.com/documentation/ugc#Tech

The following sections explain all the functions required to get UGC functioning in

GameMaker Studio 2:

Creating And Editing Content

The following functions are essentially "wrapper" functions for those supplied in the

Steam API for creating and uploading content to their servers. As such, we recommend

that you read over the linked Steam documentation before using them to gain a greater

understanding of how they work: Creating And Uploading Content.

steam_ugc_create_item

steam_ugc_delete_item

steam_ugc_start_item_update

steam_ugc_set_item_title

steam_ugc_set_item_description

steam_ugc_set_item_visibility

steam_ugc_set_item_tags

steam_ugc_set_item_content

steam_ugc_set_item_preview

steam_ugc_submit_item_update

steam_ugc_get_item_update_progress

When you get a successful subscription callback this means that your game is now

downloading the UGC. You would then check if the item is installed (ie: download

completed) with steam_ugc_get_item_install_info.

2.

If the item is not completely installed, you can

use steam_ugc_get_item_update_info to track the download progress.
3.

•

•

•

•

•

•

•

•

•

•

•

https://partner.steamgames.com/documentation/ugc#CreateUploadContent

 Consuming Content

Once your user content has been created and the workshop has it available for download,

people can subscribe to it through the Steam App or through the Web portal.

However GameMaker Studio 2 also includes the following functions to use the Steam API

for creating and canceling subscriptions as well as for getting information about what the

user is subscribed to currently:

steam_ugc_subscribe_item

steam_ugc_unsubscribe_item

steam_ugc_num_subscribed_items

steam_ugc_get_subscribed_items

steam_ugc_get_item_install_info

steam_ugc_get_item_update_info

steam_ugc_request_item_details

Querying Content

There are also a large number of functions available to query the Steam API about the

UGC items available:

steam_ugc_create_query_user

steam_ugc_create_query_user_ex

steam_ugc_create_query_all

steam_ugc_create_query_all_ex

steam_ugc_query_set_cloud_filename_filter

steam_ugc_query_set_match_any_tag

steam_ugc_query_set_search_text

steam_ugc_query_set_ranked_by_trend_days

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

 steam_ugc_query_add_required_tag

steam_ugc_query_add_excluded_tag

steam_ugc_query_set_return_long_description

steam_ugc_query_set_return_total_only

steam_ugc_query_set_allow_cached_response

steam_ugc_send_query

You can get a preview image of any UGC item from the workshop by using the function

steam_ugc_send_query to get the preview file handle of the image, and then calling the

following function:

steam_ugc_download

Constants

This section also provides a set of constants to be used along side the functions provided

above:

UGCFileType

UGCFileVisibility

UGCListSortOrder

UGCListType

UGCMatchType

UGCQueryType

•

•

•

•

•

•

•

•

•

•

•

•

•

 steam_is_screenshot_requested

This function will poll the Steam API to see if the key for taking a screenshot of the game

has been pressed. The function will only return true for one step (game tick) when the key

is pressed, and will return at all other times.

Please note that if the screenshot key is pressed, this function will only return once

for each step that it is pressed, and return for any subsequent calls within the same
step. For example, if a screenshot is requested in the current frame and you call this

function in the Step event to find that out, you will get ; however, if you call it again in

Draw GUI to check whether a screenshot was requested, you will get as the function

had already been "used up" in the Step event. To use the function's return value multiple

times within the same frame, it is recommended to store it in a variable and read that

instead of calling the function again.

NOTE This function does not take a screenshot for you. This only signals that the key

has been pressed and you must use the GameMaker Studio 2 functions screen_save

or screen_save_part to save a local copy of the file to be uploaded.

steam_is_screenshot_requested();

Bool

if steam_is_screenshot_requested()
{
 var file = "Catch_The_Haggis_" + string(global.scrn_num) + ".png");
 screen_save(file)
 steam_send_screenshot(file, window_get_width(), window_get_height());
 global.scrn_num += 1;
}

false

true

false

true

false

Syntax:

Returns:

Example:

https://manual.yoyogames.com/GameMaker_Language/GML_Reference/Cameras_And_Display/screen_save.htm
https://manual.yoyogames.com/GameMaker_Language/GML_Reference/Cameras_And_Display/screen_save_part.htm

 The above code will poll the Steam API for a screenshot request and if it has been, a

unique name for the image file will be generated, a screenshot will be taken, and the file

will be sent to the Steam Community page for the user.

 steam_send_screenshot

With this function you can upload a screenshot to the Steam Community profile page of

the currently logged in user. The filename you supply is the name of the local file that was

created when you took the screenshot using the GameMaker Studio 2 functions

screen_save or screen_save_part. The width and height define the image size, and the

function will return a value of 0 if it fails for whatever reason and a value greater than 0 if

it succeeds.

steam_send_screenshot(filename, width, height);

Argument Type Description

filename string The name of the image file to upload.

width real The width of the image.

height real The height of the image.

Real

if steam_is_screenshot_requested()
{
 var file = "Catch_The_Haggis_" + string(global.scrn_num) + ".png");
 screen_save(file)
 steam_send_screenshot(file, window_get_width(), window_get_height());
 global.scrn_num += 1;
}

The above code will poll the Steam API for a screenshot request and if it has been, a

unique name for the image file will be generated, a screenshot will be taken, and the file

will be sent to the Steam Community page for the user.

Syntax:

Returns:

Example:

https://manual.yoyogames.com/GameMaker_Language/GML_Reference/Cameras_And_Display/screen_save.htm
https://manual.yoyogames.com/GameMaker_Language/GML_Reference/Cameras_And_Display/screen_save_part.htm

 steam_ugc_create_item

This function is used to prepare the Workshop API and generate a published file ID for the

item to be added. The function must be called before doing anything else with the item to

be uploaded, as you will be required to use the unique published ID value that it returns in

the Steam Async Event for updating.

This is an asynchronous function that will return an asynchronous id and trigger the

Steam Async Event when the task is finished.

steam_ugc_create_item(consumer_app_id, file_type);

Argument Type Description

consumer_app_id integer
The unique App ID for

your game on Steam.

file_type constant.UGCFileType

One of the available file

type constants (see

UGCFileType constants).

Real

Asynchronous Steam Event

async_load Contents

Key Type Description

id real The asynchronous request ID

event_type string
The string

value

Syntax:

Returns:

Triggers:

"ugc_create_item"

https://manual-en.yoyogames.com/The_Asset_Editors/Object_Properties/Async_Events/Steam.htm

result real

This will either be the GML

constant or

some other real number (see

the Steam docs, for more

details)

legal_agreement_required bool
Will be true or false (see the

Steam docs for more details)

published_file_id int64

This key holds the unique

published ID for the item (you

may need to cast it using

the int64() function)

In this example we first call the function and store the async ID value in a variable:

var app_id = steam_get_app_id();
new_item = steam_ugc_create_item(app_id, ugc_filetype_community);

This would then send off a request to the Steam API to create the new Workshop item,

generating an async event which we would deal with as follows:

var event_id = async_load[? "id"];
if event_id == new_item
{
 var type = async_load[? "event_type"];
 if type == "ugc_create_item"
 {
 global.Publish_ID = async_load[? "published_file_id"];
 }
}

The above code checks the event type and if it is "ugc_create_item" then it retrieves the

published file ID and stores it in a global variable for future reference.

ugc_result_success

Extended Example:

https://partner.steamgames.com/doc/api/steam_api#EResult
https://partner.steamgames.com/documentation/ugc#Legal

 steam_ugc_delete_item

This function attempts to delete a previously published UGC item.

This is an asynchronous function that will return an asynchronous id and trigger the

Steam Async Event when the task is finished.

steam_ugc_delete_item(ugc_query_handle);

Argument Type Description

ugc_query_handle real The query handle to use.

Real

Asynchronous Steam Event

async_load Contents

Key Type Description

id real The asynchronous request ID

event_type string The string value

result real

This will either be the GML constant

 or some other real number

(see the Steam docs, for more details)

Syntax:

Returns:

Triggers:

"ugc_item_delete"

ugc_result_success

Example:

https://manual-en.yoyogames.com/The_Asset_Editors/Object_Properties/Async_Events/Steam.htm
https://partner.steamgames.com/doc/api/steam_api#EResult

 steam_ugc_delete_item(ugc_query_handle);

The above code creates a deletion request for .

ugc_query_handle

 steam_ugc_start_item_update

This function must be called before adding or updating information on a UGC item. You

need to supply the unique App ID for your game on Steam, along with the unique

published file ID that was returned for the item when you created it using the function

steam_ugc_create_item. The function will return a unique update handle for the item,

which you can then use in the UGC item functions to update (or add) information for

uploading.

steam_ugc_start_item_update(consumer_app_id, published_file_id);

Argument Type Description

consumer_app_id real
The unique App ID for your game on

Steam.

published_file_id int64
The unique published file ID value for the

item.

Real

var app_id = steam_get_app_id();
var updateHandle = steam_ugc_start_item_update(app_id, global.Publish_ID);
steam_ugc_set_item_title(updateHandle, "My workshop item(3)!");
steam_ugc_set_item_description(updateHandle, "testing workshop...");
steam_ugc_set_item_visibility(updateHandle, ugc_visibility_public);
var tagArray;
tagArray[0] = "Test";
tagArray[1] = "New";
steam_ugc_set_item_tags(updateHandle, tagArray);
steam_ugc_set_item_preview(updateHandle, "promo.jpg");
steam_ugc_set_item_content(updateHandle, "WorkshopContent1");
requestId = steam_ugc_submit_item_update(updateHandle, "Version 1.2");

Syntax:

Returns:

Example:

 The above code gets the game ID, then uses that along with a previously stored published

file ID to generate an update handle for the item. This handle is then used to update

various pieces of information before the update is pushed to the Workshop servers.

 steam_ugc_set_item_title

This function will set the title to be used for the given item.

The function will return if the API was successfully accessed and if there was

an issue.

steam_ugc_set_item_title(ugc_update_handle, title);

Argument Type Description

ugc_update_handle real

The unique handle for the UGC to be

updated (returned

from steam_ugc_start_item_update)

title string
The title (max 128 characters) to be used

for the item.

Bool

var app_id = steam_get_app_id();
var updateHandle = steam_ugc_start_item_update(app_id, global.Publish_ID);
steam_ugc_set_item_title(updateHandle, "My workshop item(3)!");
steam_ugc_set_item_description(updateHandle, "testing workshop...");
steam_ugc_set_item_visibility(updateHandle, ugc_visibility_public);
var tagArray;
tagArray[0] = "Test";
tagArray[1] = "New";
steam_ugc_set_item_tags(updateHandle, tagArray);
steam_ugc_set_item_preview(updateHandle, "promo.jpg");
steam_ugc_set_item_content(updateHandle, "WorkshopContent1");
requestId = steam_ugc_submit_item_update(updateHandle, "Version 1.2");

true false

Syntax:

Returns:

Example:

 The above code gets the game ID, then uses that along with a previously stored published

file ID to generate an update handle for the item. This handle is then used to update

various pieces of information before the update is pushed to the Workshop servers.

 steam_ugc_set_item_description

This function will set the description to be used for the given item.

The function will return if the API was successfully accessed and if there was

an issue.

steam_ugc_set_item_description(ugc_update_handle, description);

Argument Type Description

ugc_update_handle real

The unique handle for the UGC to be

updated (returned

from steam_ugc_start_item_update)

description string
The description (max 8000 characters) to

be used for the item.

Bool

var app_id = steam_get_app_id();
var updateHandle = steam_ugc_start_item_update(app_id, global.Publish_ID);
steam_ugc_set_item_title(updateHandle, "My workshop item(3)!");
steam_ugc_set_item_description(updateHandle, "testing workshop...");
steam_ugc_set_item_visibility(updateHandle, ugc_visibility_public);
var tagArray;
tagArray[0] = "Test";
tagArray[1] = "New";
steam_ugc_set_item_tags(updateHandle, tagArray);
steam_ugc_set_item_preview(updateHandle, "promo.jpg");
steam_ugc_set_item_content(updateHandle, "WorkshopContent1");
requestId = steam_ugc_submit_item_update(updateHandle, "Version 1.2");

true false

Syntax:

Returns:

Example:

 The above code gets the game ID, then uses that along with a previously stored published

file ID to generate an update handle for the item. This handle is then used to update

various pieces of information before the update is pushed to the Workshop servers.

 steam_ugc_set_item_visibility

This function will set the visibility of the given item, using one of

the UGCFileVisibility constants.

The function will return if the API was successfully accessed and if there was

an issue.

steam_ugc_set_item_visibility(ugc_update_handle, visibility);

Argument Type Description

ugc_update_handle real

The unique handle for the

UGC to be updated (returned

from steam_ugc_start_item_update)

visibility constant.UGCFileVisibility

The visibility to be used for

the

item (see UGCFileVisibility constant)

Bool

var app_id = steam_get_app_id();
var updateHandle = steam_ugc_start_item_update(app_id, global.Publish_ID);
steam_ugc_set_item_title(updateHandle, "My workshop item(3)!");
steam_ugc_set_item_description(updateHandle, "testing workshop...");
steam_ugc_set_item_visibility(updateHandle, ugc_visibility_public);
var tagArray;
tagArray[0] = "Test";
tagArray[1] = "New";
steam_ugc_set_item_tags(updateHandle, tagArray);
steam_ugc_set_item_preview(updateHandle, "promo.jpg");
steam_ugc_set_item_content(updateHandle, "WorkshopContent1");
requestId = steam_ugc_submit_item_update(updateHandle, "Version 1.2");

true false

Syntax:

Returns:

Example:

 The above code gets the game ID, then uses that along with a previously stored published

file ID to generate an update handle for the item. This handle is then used to update

various pieces of information before the update is pushed to the Workshop servers.

 steam_ugc_set_item_tags

This function will set the tags to be used for the given item. The tags should be added to a

1D array as string elements and the array passed to the function.

The function will return if the API was successfully accessed and if there was

an issue.

steam_ugc_set_item_tags(ugc_update_handle, tags);

Argument Type Description

ugc_update_handle real

The unique handle for the UGC to be

updated (returned

from steam_ugc_start_item_update)

tags string
The tags (as an string json array) to be

used for the item.

Bool

var app_id = steam_get_app_id();
var updateHandle = steam_ugc_start_item_update(app_id, global.Publish_ID);
steam_ugc_set_item_title(updateHandle, "My workshop item(3)!");
steam_ugc_set_item_description(updateHandle, "testing workshop...");
steam_ugc_set_item_visibility(updateHandle, ugc_visibility_public);
var tagArray;
tagArray[0] = "Test";
tagArray[1] = "New";
steam_ugc_set_item_tags(updateHandle, string(tagArray));
steam_ugc_set_item_preview(updateHandle, "promo.jpg");
steam_ugc_set_item_content(updateHandle, "WorkshopContent1");
requestId = steam_ugc_submit_item_update(updateHandle, "Version 1.2");

true false

Syntax:

Returns:

Example:

 The above code gets the game ID, then uses that along with a previously stored published

file ID to generate an update handle for the item. This handle is then used to update

various pieces of information before the update is pushed to the Workshop servers.

 steam_ugc_set_item_content

This function will set the content path to be used for the given item, and it should be a

relative path to the folder which contains the content files to upload - which in turn should

be in the save are or the game bundle (ie: an included file).

The function will return if the API was successfully accessed and if there was

an issue.

steam_ugc_set_item_content(ugc_update_handle, content);

Argument Type Description

ugc_update_handle real

The unique handle for the UGC to be

updated (returned

from steam_ugc_start_item_update)

content string The content path to be used for the item

Bool

var app_id = steam_get_app_id();
var updateHandle = steam_ugc_start_item_update(app_id, global.Publish_ID);
steam_ugc_set_item_title(updateHandle, "My workshop item(3)!");
steam_ugc_set_item_description(updateHandle, "testing workshop...");
steam_ugc_set_item_visibility(updateHandle, ugc_visibility_public);
var tagArray;
tagArray[0] = "Test";
tagArray[1] = "New";
steam_ugc_set_item_tags(updateHandle, tagArray);
steam_ugc_set_item_preview(updateHandle, "promo.jpg");
steam_ugc_set_item_content(updateHandle, "WorkshopContent1");
requestId = steam_ugc_submit_item_update(updateHandle, "Version 1.2");

true false

Syntax:

Returns:

Example:

 The above code gets the game ID, then uses that along with a previously stored published

file ID to generate an update handle for the item. This handle is then used to update

various pieces of information before the update is pushed to the Workshop servers.

 steam_ugc_set_item_preview

This function will set the preview image to be used for the given item. The image should

be supplied as either a PNG, JPG or GIF format file with a maximum size of 1MB. The path

to the image should be a relative path in the save are or the game bundle (ie: an included

file).

The function will return if the API was successfully accessed and if there was

an issue.

steam_ugc_set_item_preview(ugc_update_handle, preview);

Argument Type Description

ugc_update_handle real

The unique handle for the UGC to be

updated (returned

from steam_ugc_start_item_update)

preview string
The preview image (JPG, GIF or PNG -

max size 1MB) to be used for the item.

Bool

var app_id = steam_get_app_id();
var updateHandle = steam_ugc_start_item_update(app_id, global.Publish_ID);
steam_ugc_set_item_title(updateHandle, "My workshop item(3)!");
steam_ugc_set_item_description(updateHandle, "testing workshop...");
steam_ugc_set_item_visibility(updateHandle, ugc_visibility_public);
var tagArray;
tagArray[0] = "Test";
tagArray[1] = "New";
steam_ugc_set_item_tags(updateHandle, tagArray);
steam_ugc_set_item_preview(updateHandle, "promo.jpg");

true false

Syntax:

Returns:

Example:

steam_ugc_set_item_content(updateHandle, "WorkshopContent1");
requestId = steam_ugc_submit_item_update(updateHandle, "Version 1.2");

The above code gets the game ID, then uses that along with a previously stored published

file ID to generate an update handle for the item. This handle is then used to update

various pieces of information before the update is pushed to the Workshop servers.

 steam_ugc_submit_item_update

This function will submit the UGC item indexed by the given handle to the Steam

Workshop servers, adding the change notes to be used for the given item.

This is an asynchronous function that will return an asynchronous id and trigger the

Steam Async Event when the task is finished.

steam_ugc_submit_item_update(ugc_update_handle, change_note);

Argument Type Description

ugc_update_handle real

The unique handle for the UGC to be

updated (returned

from steam_ugc_start_item_update)

change_note string
The change notes to be used for the

item.

Real

Asynchronous Steam Event

async_load Contents

Key Type Description

id real The asynchronous request ID

event_type string
The string

value

result real

This will either be the GML

constant or

some other real number (see

Syntax:

Returns:

Triggers:

"ugc_update_item"

ugc_result_success

https://manual-en.yoyogames.com/The_Asset_Editors/Object_Properties/Async_Events/Steam.htm

 the Steam docs, for more

details)

legal_agreement_required bool
Will be true or false (see the

Steam docs for more details)

var app_id = steam_get_app_id();
var updateHandle = steam_ugc_start_item_update(app_id, global.Publish_ID);
steam_ugc_set_item_title(updateHandle, "My workshop item(3)!");
steam_ugc_set_item_description(updateHandle, "testing workshop...");
steam_ugc_set_item_visibility(updateHandle, ugc_visibility_public);
var tagArray;
tagArray[0] = "Test";
tagArray[1] = "New";
steam_ugc_set_item_tags(updateHandle, tagArray);
steam_ugc_set_item_preview(updateHandle, "promo.jpg");
steam_ugc_set_item_content(updateHandle, "WorkshopContent1");
requestId = steam_ugc_submit_item_update(updateHandle, "Version 1.2");

The above code gets the game ID, then uses that along with a previously stored published

file ID to generate an update handle for the item. This handle is then used to update

various pieces of information before the update is pushed to the Workshop servers.

Example:

https://partner.steamgames.com/doc/api/steam_api#EResult
https://partner.steamgames.com/documentation/ugc#Legal

 steam_ugc_get_item_update_progress

This function can be used to track the update status for an item. You give the item handle

(as returned by the function steam_ugc_start_item_update) and an empty DS map which

will then be populated with the update information (see table below)

If there is an error the function will return and the map will be empty, otherwise the

function returns .

steam_ugc_get_item_update_progress(ugc_update_handle, info_map);

Argument Type Description

ugc_update_handle integer
The unique handle for the UGC to be

updated.

info_map id.dsmap A (previously created) DS map index.

info_map Output Contents

Key Type Description

status_code real The Steam status code

status_string string A string for the current status

bytes_processed real The bytes processed so far

bytes_total real The total number of bytes in the update

Bool

false

true

Syntax:

Returns:

Example:

https://manual.yoyogames.com/GameMaker_Language/GML_Reference/Data_Structures/DS_Maps/DS_Maps.htm
https://manual.yoyogames.com/GameMaker_Language/GML_Reference/Data_Structures/DS_Maps/DS_Maps.htm

 var uploadMap = ds_map_create();
steam_ugc_get_item_update_progress(global.itemHandle, uploadMap);
var statusCode = uploadMap[? "status_code"];
var status = uploadMap[? "status_string"];
var processed = uploadMap[? "bytes_processed"];
var total = uploadMap[? "bytes_total"];
draw_text(32, 0, "Upload info for item:" + string(global.itemHandle));
draw_text(32, 15, "status code:" + string(statusCode));
draw_text(32, 30, "status:" + string(status));
draw_text(32, 45, "bytes processed:" +string(processed));
draw_text(32, 60, "bytes total:" + string(total));
ds_map_destroy(uploadMap);

The above code will query the upload status of the item indexed in the global variable

"itemHandle", using a DS Map to store the information. This is then parsed and the

resulting values drawn to the screen.

 steam_ugc_subscribe_item

This function can be used to subscribe to a UGC item.

This is an asynchronous function that will return an asynchronous id and trigger the

Steam Async Event when the task is finished.

steam_ugc_subscribe_item(published_file_id);

Argument Type Description

published_file_id int64
The unique file ID for the UGC to subscribe

to.

Real

Asynchronous Steam Event

async_load Contents

Key Type Description

id real The asynchronous request ID

event_type string The string value

result real

This will either be the GML constant

 or some other real

number (see the Steam docs, for more

details)

published_file_id int64

This key holds the unique published ID

for the item (you may need to cast it

using the int64 function, before passing

it to subsequent functions)

Syntax:

Returns:

Triggers:

"ugc_subscribe_item"

ugc_result_success

https://manual-en.yoyogames.com/The_Asset_Editors/Object_Properties/Async_Events/Steam.htm
https://partner.steamgames.com/doc/api/steam_api#EResult
https://manual.yoyogames.com/GameMaker_Language/GML_Reference/Variable_Functions/int64.htm

steam_sub = steam_ugc_subscribe_item(global.pubFileID);

The above code will subscribe (and download) the item with the file ID stored in the global

variable "pubFileID".

Example:

 steam_ugc_unsubscribe_item

This function can be used to unsubscribe from a UGC item.

This is an asynchronous function that will return an asynchronous id and trigger the

Steam Async Event when the task is finished.

steam_ugc_unsubscribe_item(published_file_id);

Argument Type Description

published_file_id int64
The unique file ID for the UGC to

unsubscribe from.

Real

Asynchronous Steam Event

async_load Contents

Key Type Description

id real The asynchronous request ID

event_type string The string value

result real

This will either be the GML constant

 or some other real

number (see the Steam docs, for more

details)

published_file_id int64

This key holds the unique published ID

for the item (you may need to cast it

using the int64 function)

Syntax:

Returns:

Triggers:

"ugc_unsubscribe_item"

ugc_result_success

https://manual-en.yoyogames.com/The_Asset_Editors/Object_Properties/Async_Events/Steam.htm
https://partner.steamgames.com/doc/api/steam_api#EResult
https://manual.yoyogames.com/GameMaker_Language/GML_Reference/Variable_Functions/int64.htm

steam_sub = steam_ugc_unsubscribe_item(global.pubFileID);

The above code will unsubscribe (and remove) the item with the file ID stored in the global

variable "pubFileID".

Example:

 steam_ugc_num_subscribed_items

This function can be used to get the number of items that the current user has subscribed

to.

steam_ugc_num_subscribed_items();

Real

numSub = steam_ugc_num_subscribed_items();

The above code will store the number of subscribed items in a variable.

Syntax:

Returns:

Example:

 steam_ugc_get_subscribed_items

This function will populate a DS list with all the published file IDs for the items that the

user is currently subscribed to. You must first create the list and store the index in a

variable, then pass this to the function.

The function will return if everything is correct and the Steam API is initialized, or

 if there is an error.

steam_ugc_get_subscribed_items(item_list);

Argument Type Description

item_list id.dslist A (previously created) DS list index.

Bool

steam_list = ds_list_create();
steam_ugc_get_subscribed_items(steam_list);

The above code will create an empty DS list and then populate it with the file IDs for all

subscribed items for the user.

true

false

Syntax:

Returns:

Example:

https://manual.yoyogames.com/GameMaker_Language/GML_Reference/Data_Structures/DS_Lists/DS_Lists.htm

 steam_ugc_get_item_install_info

This function can be used to retrieve information about any given published file item that

has been subscribed to and downloaded to the Steam local storage area for your game.

You give the item ID and supply the index to an empty DS map which will then be

populated with the install information (see table below).

If the item exists (ie.: as been subscribed and download was complete) then the function

will return and populate the map, otherwise it will return and the map will

remain empty.

steam_ugc_get_item_install_info(published_file_id, info_map);

Argument Type Description

published_file_id int64
The unique handle for the UGC to be

updated.

info_map id.dsmap A (previously created) DS map index.

info_map Output Contents

Key Type Description

size_on_disk real The file size on disk (in bytes)

legacy_item bool
Will be true or false depending on whether

it is a legacy file or not

folder string

This is the full path to the installed content

(please refer to "Item Installation" in Steam

SDK docs, as "legacy" items uploaded with

the old method, are treated differently)

Bool

true false

Syntax:

Returns:

https://manual.yoyogames.com/GameMaker_Language/GML_Reference/Data_Structures/DS_Maps/DS_Maps.htm

var item_map = ds_map_create();
steam_ugc_get_item_install_info(global.fileID, item_map);

The above code will query the install status of the item indexed in the global variable

"fileID", using a DS Map to store the information.

Example:

 steam_ugc_get_item_update_info

This function can be used to retrieve information about the current download state for the

given file ID. You give the item ID and supply the index to an empty DS map which will

then be populated with the update information (see table below).

If the item exists then the function will return and populate the map, otherwise it will

return and the map will remain empty.

steam_ugc_get_item_update_info(published_file_id, info_map);

Argument Type Description

published_file_id int64
The unique file ID for the UGC to be

checked.

info_map id.dsmap A (previously created) DS map index.

info_map Output Contents

Key Type Description

needs_update bool
Whether the item needs an update or

not

is_downloading bool
Whether the item is currently

downloading or not

bytes_downloaded real
The number of bytes that has been

downloaded

bytes_total real
The total size (number of bytes)

required for the item on disk

Bool

true

false

Syntax:

Returns:

https://manual.yoyogames.com/GameMaker_Language/GML_Reference/Data_Structures/DS_Maps/DS_Maps.htm

var info_map = ds_map_create();
var info = steam_ugc_get_item_update_info(global.fileID, info_map);
if info
{
 draw_text(32, 15, "needs_update: " + string(info_map[? "needs_update"]));
 draw_text(32, 30, "is_downloading: " + string(info_map[? "is_downloading"]));
 draw_text(32, 45, "bytes_downloaded: " + string(info_map[? "bytes_downloaded"]));
 draw_text(32, 60, "bytes_total: " + string(info_map[? "bytes_total"]));
}

The above code will query the download status of the item indexed in the global variable

"fileID", using a DS Map to store the information.

Example:

 steam_ugc_request_item_details

This function can be used to retrieve information about a given file ID. You give the file ID

and supply a maximum age for checking (see the Steam docs for more information).

This is an asynchronous function that will return an asynchronous id and trigger the

Steam Async Event when the task is finished.

steam_ugc_request_item_details(published_file_id, max_age_seconds);

Argument Type Description

published_file_id real
The unique file ID for the UGC to be

checked.

max_age_seconds real
The age of the data to check (recommended

30 - 60 seconds).

Real

Asynchronous Steam Event

async_load Contents

Key Type Description

id real The asynchronous request ID

event_type string
The string

value

result real
This will either be the GML

constant or

Syntax:

Returns:

Triggers:

"ugc_item_details"

ugc_result_success

https://manual-en.yoyogames.com/The_Asset_Editors/Object_Properties/Async_Events/Steam.htm

 some other real number (see the

Steam docs, for more details)

cached_data bool

Will be true if the returned

details are from the local cache

or false if they are taken from

the server

published_file_id int64

This key holds the unique

published ID for the item (you

may need to cast it using

the int64 function)

file_type string The type of file used

creator_app_id real The Steam ID of the item creator

consumer_app_id real
The Steam ID of the item

consumer

title string The title of the item

description string The description of the item

steam_id_owner real The Steam ID of the item owner

time_created real
The time the item was first

created

time_uploaded real
The last time the item was

updated

time_added_to_user_list real
The time that the item was

subscribed to

visibility constant.UGCFileVisibility
The visibility of the

item (see UGCFileVisibility constant)

banned bool
Whether the item has been

banned or not

accepted_for_use bool
Whether the item has been

accepted for use or not

tags_truncated array
Short version of the tags as an

array

tags array An array of the tags for the item

handle_file int64
The unique file handle for the

item

handle_preview_file int64

The unique handle for the image

preview for the item (can be

used with

https://partner.steamgames.com/doc/api/steam_api#EResult
https://manual.yoyogames.com/GameMaker_Language/GML_Reference/Variable_Functions/int64.htm

 steam_ugc_download to

download a preview image)

filename string The name of the item file

file_size real The size of the item file

preview_file_size real The size of the preview image

url string The full URL for the item

up_votes real The number of up-votes received

down_votes real
The number of down-votes

received

score real The overall score of the item

account_id_owner real

The account ID from the Steam

ID owner (this can be used in

function

steam_ugc_create_query_user_ex)

In this example we send off a details request for an item and then parse the resulting

async_load DS map to set some variables. First we send of the request:

steam_details = steam_ugc_request_item_details(global.fileID, 60);

The above code will request details on the item with the file ID stored in the global

variable and will trigger a Steam Async event with the returned information. In this event

we can then parse the map and store some of the values in variables which can then be

used to display the information to the user:

var map_id = async_load[? "id"];
var result = async_load[? "result"];
if (map_id == steam_details) && (result == ugc_result_success)
{
 mTitle = async_load[? "title"];
 mDesc = async_load[? "description"];
 mTags = async_load[? "tags"];
 m_hPreviewFile = async_load[? "handle_preview_file"];
 m_hOwnerSteamId = async_load[? "steam_id_owner"];
 mOwnerAccountId = async_load[? "account_id_owner"];
 mPubFileId = async_load[? "published_file_id"];
 mScore = async_load[? "score"];
}

Extended Example:

 steam_ugc_create_query_user

This function can be used to query the UGC data base. The function automatically uses the

default ID for the app, user and assumes that the query is being done by the consumer

(rather than the creator). The function requires you to use the following constants for the

type of data to query (UGCListType), the type of item to match (UGCMatchType) and the

order in which the returned items will be sorted (UGCListSortOrder), as well as a page

number - note that a query will return a maximum number of 50 items.

The function returns a unique query handle value which should be stored in a variable for

use in the other query functions. Note that this function only prepares the query but does

not actually send it - for that you must call the function steam_ugc_send_query - and you

can use further functions to refine the search request before it is

actually sent.

steam_ugc_create_query_user(list_type, match_type, sort_order, page);

Argument Type Description

list_type constant.UGCListType

The type of data list to

create

(see UGCListType constants)

match_type constant.UGCMatchType

The type of UGC items to

query (see

UGCMatchType constants)

sort_order constant.UGCListSortOrder

The way that data should

be ordered (see

UGCListSortOrder constants)

page real The page number to query.

Real

steam_ugc_query_*()

Syntax:

Returns:

query_handle = steam_ugc_create_query_user(ugc_list_Published, ugc_match_Items,
ugc_sortorder_TitleAsc, 1);

The above code creates a query request and stores it's handle in a variable for future use.

Example:

 steam_ugc_create_query_user_ex

This function can be used to query the UGC data base. The function requires the ID value

for the user and the ID of the game that is going to consume the item and/or the ID of the

game that created the item. You also need to use the following constants for the type of

data to query (UGCListType), the type of item to query (UGCMatchType) and the order in

which the returned items will be sorted (UGCListSortOrder), as well as a page number -

note that a query will return a maximum number of 50 items.

The function returns a unique query handle value which should be stored in a variable for

use in the other query functions. Note that this function only prepares the query but does

not actually send it - for that you must call the function steam_ugc_send_query - and you

can use further functions to refine the search request before it is

actually sent.

steam_ugc_create_query_user_ex(list_type, match_type, sort_order, page, account_id,
creator_app_id, consumer_app_id);

Argument Type Description

list_type constant.UGCListType

The type of data list

to create

(see UGCListType constants)

match_type constant.UGCMatchType

The type of UGC

items to query (see

UGCMatchType constants)

sort_order constant.UGCListSortOrder

The way that data

should be ordered

(see

UGCListSortOrder constants)

page real
The page number to

query

account_id real
The Steam account

ID

creator_app_id real
The item creator app

ID

consumer_app_id real The consumer app ID

steam_ugc_query_*()

Syntax:

Real

query_handle = steam_ugc_create_query_user_ex(ugc_list_Published, ugc_match_Items,
ugc_sortorder_TitleAsc, page, global.AccountID, 0, global.GameID);

The above code creates a query request and stores it's handle in a variable for future use.

Returns:

Example:

 steam_ugc_create_query_all

This function can be used to query the UGC data base using some predefined query types.

The function requires the following constants for the type of query to create

(UGCQueryType), the type of item to match (UGCMatchType) and the page number to

query - note that a query will return a maximum number of 50 items.

The function returns a unique query handle value which should be stored in a variable for

use in the other query functions. Note that this function only prepares the query but does

not actually send it - for that you must call the function steam_ugc_send_query - and you

can use further functions to refine the search request before it is

actually sent.

steam_ugc_create_query_all(query_type, match_type, page);

Argument Type Description

query_type constant.UGCQueryType

The type of query to create

(see

UGCQueryType constants)

match_type constant.UGCMatchType

The type of UGC items to

query (see

UGCMatchType constants)

page real The page number to query

Real

query_handle = steam_ugc_create_query_all(ugc_query_RankedByVote, ugc_match_Items,
1);

steam_ugc_query_*()

Syntax:

Returns:

Example:

 The above code creates a general query request and stores it's handle in a variable for

future use.

 steam_ugc_create_query_all_ex

This function can be used to query the UGC data base. The function requires the ID of the

game that is going to consume the item and/or the ID of the game that created the item,

and you need to use the following constants for the type of query to create

(UGCQueryType), the type of item to match (UGCMatchType) and the page number to

query. Note that a query will return a maximum number of 50 items.

The function returns a unique query handle value which should be stored in a variable for

use in the other query functions. Note that this function only prepares the query but does

not actually send it - for that you must call the function steam_ugc_send_query - and you

can use further functions to refine the search request before it is

actually sent.

steam_ugc_create_query_all_ex(query_type, match_type, page, creator_app_id,
consumer_app_id);

Argument Type Description

query_type constant.UGCQueryType

The type of query to

create (see

UGCQueryType constants)

match_type constant.UGCMatchType

The type of UGC items

to query (see

 UGCMatchType constants)

page real
The page number to

query

creator_app_id integer The item creator app ID

consumer_app_id integer The consumer app ID

Real

steam_ugc_query_*()

Syntax:

Returns:

query_handle = steam_ugc_create_query_all_ex(ugc_query_RankedByVote, page,
global.AccountID, 0, global.GameID);

The above code creates a query request and stores it's handle in a variable for future use.

Example:

 steam_ugc_query_set_cloud_filename_filter

This function can be used to further filter any given UGC query, specifically to check and

see if a Workshop item file name must match or not. The query handle is the value

returned when you created the query (using, for example, steam_ugc_create_query_user)

and the second argument is either or depending on whether you require the

file names to match.

The function will return if the query filter was correctly set, or otherwise.

steam_ugc_query_set_cloud_filename_filter(ugc_query_handle, should_match);

Argument Type Description

ugc_query_handle integer The query handle to use.

match_cloud_filename bool
Sets whether the UGC item file name

should match or not.

Bool

var query_handle = steam_ugc_create_query_all(ugc_query_RankedByVote,
ugc_match_Items, 1);
steam_ugc_query_set_cloud_filename_filter(query_handle, true);
steam_ugc_query_add_excluded_tag(query_handle, "nasty chips");
steam_ugc_query_set_return_long_description(query_handle, true);
steam_ugc_query_set_allow_cached_response(query_handle, true);
query_ID = steam_ugc_send_query(query_handle);

The above code creates a query request and stores it's handle in a local variable for future

use in the rest of the functions which further define the query request before sending the

query.

true false

true false

Syntax:

Returns:

Example:

 steam_ugc_query_set_match_any_tag

This function can be used to further filter any given UGC query, specifically to switch on or

off tag matching. The query handle is the value returned when you created the query

(using, for example, steam_ugc_create_query_user) and the second argument is

either or depending on whether you require a check for matching tags.

The function will return if the query filter was correctly set, or otherwise.

steam_ugc_query_set_match_any_tag(ugc_query_handle, match_any_tag);

Argument Type Description

ugc_query_handle integer The query handle to use.

match_any_tag bool
Sets whether the UGC item tags should

match anything or not.

Bool

var query_handle = steam_ugc_create_query_all(ugc_query_RankedByVote,
ugc_match_Items, 1);
steam_ugc_query_set_match_any_tag(query_handle, false);
steam_ugc_query_add_excluded_tag(query_handle, "walking simulator");
steam_ugc_query_set_return_long_description(query_handle, true);
steam_ugc_query_set_allow_cached_response(query_handle, true);
query_ID = steam_ugc_send_query(query_handle);

The above code creates a query request and stores it's handle in a local variable for future

use in the rest of the functions which further define the query request before sending the

query.

true false

true false

Syntax:

Returns:

Example:

 steam_ugc_query_set_search_text

This function can be used to further filter any given UGC query, specifically to search for

the given string in the title and description of the UGC items. The query handle is the value

returned when you created the query (using, for example, steam_ugc_create_query_user)

and the second argument is a string you want to use as the search term.

The function will return if the query filter was correctly set, or otherwise.

steam_ugc_query_set_search_text(ugc_query_handle , search_text);

Argument Type Description

ugc_query_handle real The query handle to use.

search_text string The search text to use for the query.

Bool

var query_handle = steam_ugc_create_query_all(ugc_query_RankedByVote,
ugc_match_Items, 1);
steam_ugc_query_set_search_text(query_handle, "texture");
steam_ugc_query_set_return_long_description(query_handle, true);
steam_ugc_query_set_allow_cached_response(query_handle, true);
query_ID = steam_ugc_send_query(query_handle);

The above code creates a query request and stores it's handle in a local variable for future

use in the rest of the functions which further define the query request before sending the

query.

true false

Syntax:

Returns:

Example:

 steam_ugc_query_set_ranked_by_trend_days

This function can be used to further filter any UGC query made using the

 constant (UGCQueryType), specifically to search over a number of

days. The query handle is the value returned when you created the query (using, for

example, steam_ugc_create_query_user) and the second argument is the number of days

over which you want the query to run.

The function will return if the query filter was correctly set, or otherwise.

steam_ugc_query_set_ranked_by_trend_days(ugc_query_handle, days);

Argument Type Description

ugc_query_handle real The query handle to use.

days real The number of days to query.

Bool

var query_handle = steam_ugc_create_query_all(ugc_query_RankedByTrend,
ugc_match_Items, 1);
steam_ugc_query_set_ranked_by_trend_days(query_handle, 5);
steam_ugc_query_set_return_long_description(query_handle, true);
steam_ugc_query_set_allow_cached_response(query_handle, true);
query_ID = steam_ugc_send_query(query_handle);

The above code creates a query request and stores it's handle in a local variable for future

use in the rest of the functions which further define the query request before sending the

query.

ugc_query_RankedByTrend

true false

Syntax:

Returns:

Example:

 steam_ugc_query_add_required_tag

This function can be used to further filter any given UGC query, specifically to search only

those UGC items with the given tag. The query handle is the value returned when you

created the query (using, for example, steam_ugc_create_query_user) and the second

argument is a string you want to use as the tag to include.

The function will return if the query filter was correctly set, or otherwise.

steam_ugc_query_add_required_tag(ugc_query_handle, tag_name);

Argument Type Description

ugc_query_handle integer The query handle to use.

tag_name string The tag name to include.

Bool

var query_handle = steam_ugc_create_query_all(ugc_query_RankedByTrend,
ugc_match_Items, 1);
steam_ugc_query_add_required_tag(query_handle, "RPG");
steam_ugc_query_set_return_long_description(query_handle, true);
steam_ugc_query_set_allow_cached_response(query_handle, true);
query_ID = steam_ugc_send_query(query_handle);

The above code creates a query request and stores it's handle in a local variable for future

use in the rest of the functions which further define the query request before sending the

query.

true false

Syntax:

Returns:

Example:

 steam_ugc_query_add_excluded_tag

This function can be used to further filter any given UGC query, specifically to exclude a

given UGC from the query request. The query handle is the value returned when you

created the query (using, for example, steam_ugc_create_query_user) and the second

argument is a string you want to use as the tag to exclude.

The function will return if the query filter was correctly set, or otherwise.

steam_ugc_query_add_excluded_tag(ugc_query_handle, tag_name);

Argument Type Description

ugc_query_handle integer The query handle to use.

tag_name string The tag name to exclude.

Bool

var query_handle = steam_ugc_create_query_all(ugc_query_RankedByVote,
ugc_match_Items, 1);
steam_ugc_query_add_excluded_tag(query_handle, "walking simulator");
steam_ugc_query_set_return_long_description(query_handle, true);
steam_ugc_query_set_allow_cached_response(query_handle, true);
query_ID = steam_ugc_send_query(query_handle);

The above code creates a query request and stores it's handle in a local variable for future

use in the rest of the functions which further define the query request before sending the

query.

true false

Syntax:

Returns:

Example:

 steam_ugc_query_set_return_long_description

This function can be used to further filter any given UGC query, specifically to retrieve the

long description text in the call back event triggered when the query was sent. The query

handle is the value returned when you created the query (using, for example,

 steam_ugc_create_query_user) and the second argument is either or .

The function will return if the query filter was correctly set, or otherwise.

steam_ugc_query_set_return_long_description(ugc_query_handle, should_return);

Argument Type Description

ugc_query_handle real The query handle to use.

long_description bool
Whether to have the query return the long

description text.

Bool

var query_handle = steam_ugc_create_query_all(ugc_query_RankedByVote,
ugc_match_Items, 1);
steam_ugc_query_set_return_long_description(query_handle, true);
steam_ugc_query_set_allow_cached_response(query_handle, true);
query_ID = steam_ugc_send_query(query_handle);

The above code creates a query request and stores it's handle in a local variable for future

use in the rest of the functions which further define the query request before sending the

query.

true false

true false

Syntax:

Returns:

Example:

 steam_ugc_query_set_return_total_only

This function can be used to further filter any given UGC query, specifically to request only

the number of results without any other information (meaning that the DS map generated

by the send function will contain the key "num_results" without any further map data). The

query handle is the value returned when you created the query (using, for example,

 steam_ugc_create_query_user) and the second argument is either or .

The function will return if the query filter was correctly set, or otherwise.

steam_ugc_query_set_return_total_only(ugc_query_handle , total_only);

Argument Type Description

ugc_query_handle real The query handle to use.

total_only bool
Whether to have the query return only the

total number of hits or not.

Bool

var query_handle = steam_ugc_create_query_all(ugc_query_RankedByVote,
ugc_match_Items, 1);
steam_ugc_query_set_return_total_only(query_handle, true);
steam_ugc_query_set_allow_cached_response(query_handle, true);
query_ID = steam_ugc_send_query(query_handle);

The above code creates a query request and stores it's handle in a local variable for future

use in the rest of the functions which further define the query request before sending the

query.

true false

true false

Syntax:

Returns:

Example:

 steam_ugc_query_set_allow_cached_response

This function can be used to further filter any given UGC query, specifically to request that

the query check the local cache rather than online. The query handle is the value returned

when you created the query (using, for example, steam_ugc_create_query_user) and the

second argument is either or .

The function will return if the query filter was correctly set, or otherwise.

steam_ugc_query_set_allow_cached_response(ugc_query_handle , check_cache);

Argument Type Description

ugc_query_handle integer The query handle to use.

cache bool
Whether to have the query check the

local cache or not.

Bool

var query_handle = steam_ugc_create_query_all(ugc_query_RankedByTrend,
ugc_match_Items, 1);
steam_ugc_query_add_required_tag(query_handle, "RPG");
steam_ugc_query_set_return_long_description(query_handle, true);
steam_ugc_query_set_allow_cached_response(query_handle, true);
query_ID = steam_ugc_send_query(query_handle);

The above code creates a query request and stores it's handle in a local variable for future

use in the rest of the functions which further define the query request before sending the

query.

true false

true false

Syntax:

Returns:

Example:

 steam_ugc_send_query

This function can be used to send a query request. You first define the query using one of

the following function:

steam_ugc_create_query_all

steam_ugc_create_query_all_ex

steam_ugc_create_query_user

steam_ugc_create_query_user_ex

which will return a query handle. This handle is then used to set filters etc.... before being

used in this function to send off the query request.

This is an asynchronous function that will return an asynchronous id and trigger the

Steam Async Event when the task is finished.

steam_ugc_send_query(ugc_query_handle);

Argument Type Description

ugc_query_handle real The query handle to send.

Real

Asynchronous Steam Event

async_load Contents

Key Type Description

•

•

•

•

Syntax:

Returns:

Triggers:

https://manual-en.yoyogames.com/The_Asset_Editors/Object_Properties/Async_Events/Steam.htm

 id real The asynchronous request ID

event_type string The string value

result real

This will either be the GML constant

 or some other real

number (see the Steam docs, for more

details)

cached_data bool

Will be true if the returned details are

from the local cache or false if they are

taken from the server

total_matching real The total number of matching results

num_results real The number of results returned (max 50)

results_list id.dslist

A DS list index, where each list entry is a

DS Map index containing details of the

particular item (see table below)

item_info Contents

Key Type Description

published_file_id int64

This key holds the unique

published ID for the item (you

may need to cast it using the

int64 function)

file_type string The type of file used

creator_app_id real
The Steam ID of the item

creator

consumer_app_id real
The Steam ID of the item

consumer

title string The title of the item

description string The description of the item

steam_id_owner real
The Steam ID of the item

owner

time_created real
The time the item was first

created

time_uploaded real
The last time the item was

updated

"ugc_query"

ugc_result_success

https://partner.steamgames.com/doc/api/steam_api#EResult
https://manual.yoyogames.com/GameMaker_Language/GML_Reference/Data_Structures/DS_Lists/DS_Lists.htm
https://manual.yoyogames.com/GameMaker_Language/GML_Reference/Variable_Functions/int64.htm

 time_added_to_user_list real
The time that the item was

subscribed to

visibility constant.UGCFileVisibility

The visibility of the

item (see UGCFileVisibility

constant)

banned bool
Whether the item has been

banned or not

accepted_for_use bool
Whether the item has been

accepted for use or not

tags_truncated array
Short version of the tags as

an array

tags array
An array of the tags for the

item

handle_file int64
The unique file handle for the

item

handle_preview_file int64

The unique handle for the

image preview for the item

(can be used with

steam_ugc_download to

download a preview image)

filename string The name of the item file

file_size real The size of the item file

preview_file_size real The size of the preview image

url string The full URL for the item

up_votes real
The number of up-votes

received

down_votes real
The number of down-votes

received

score real The overall score of the item

account_id_owner real

The account ID from the

Steam ID owner (can be used

in the function

 steam_ugc_create_query_user)

Example:

 var query_handle = steam_ugc_create_query_all(ugc_query_RankedByTrend,
ugc_match_Items, 1);
steam_ugc_query_add_required_tag(query_handle, "RPG");
steam_ugc_query_set_return_long_description(query_handle, true);
steam_ugc_query_set_allow_cached_response(query_handle, true);
query_ID = steam_ugc_send_query(query_handle);

The above code creates a query request and stores it's handle in a local variable for future

use in the rest of the functions which further define the query request before sending the

query.

 steam_ugc_download

With this function you can download a preview image for any given UGC item. The

ugc_handle is the unique identifying value for the image (which you can get using the

function steam_ugc_send_query), and the destination filename is the name (and local path

within the Steam sandbox) that you wish to give the image file when the download is

complete.

This is an asynchronous function that will return an asynchronous id and trigger the

Steam Async Event when the task is finished.

steam_ugc_download(ugc_handle, dest_filename);

Argument Type Description

ugc_handle int64
The unique handle for the preview to be

downloaded.

dest_filename string The file name to save the preview with.

Real

Asynchronous Steam Event

async_load Contents

Key Type Description

id real The asynchronous request ID

event_type string The string value

result real
This will either be the GML constant

 or some other real

Syntax:

Returns:

Triggers:

"ugc_create_item"

ugc_result_success

https://manual-en.yoyogames.com/The_Asset_Editors/Object_Properties/Async_Events/Steam.htm

 number (see the Steam docs under

EResult, for more details)

original_filename string
This key holds the original name of the

image file on the server (a string)

dest_filename string
This key holds the image file name you

passed in (a string)

ugc_handle integer

In this example we first call the function and store the async ID value in a variable:

steam_get = steam_ugc_download(steam_handle, "\UGC\Preview_file.png");

This would then send off a file request to the Steam API, generating an async event which

we would deal with as follows:

var event_id = async_load[? "id"];
if event_id == steam_get
{
 var type = async_load[? "event_type"];
 if type == "ugc_download"
 {
 sprite_delete(preview_sprite);
 preview_sprite = sprite_add(async_load[? "dest_filename"], 0, false, false,
0, 0);
 }
}

The above code checks the event type and then creates a sprite from the downloaded

image.

Extended Example:

https://partner.steamgames.com/doc/api/steam_api

 UGC File Type

These constants specify the way that a shared file will be shared with the community and

should be used while creating a new item with steam_ugc_create_item.

NOTE See Steam Docs for more details.

UGC File Type Constant Description

This is used to create files that will be

uploaded and made available to anyone in the

community

This is used to describe files that are uploaded

but intended only for the game to consider

adding as official content

ugc_filetype_community

ugc_filetype_microtrans

https://partner.steamgames.com/doc/api/ISteamRemoteStorage#EWorkshopFileType

 UGC File Visibility

These constants specify possible visibility states that a Workshop item can be in. They are

used with the function steam_ugc_set_item_visibility and are an async callback parameter

for the functions steam_ugc_request_item_details and steam_ugc_send_query.

NOTE See Steam Docs for more details.

UGC File Visibility Constant Description

Set the item to be publicly visible

Set the item to be visible to only people on

the users friends list

Set the item to be private

ugc_visibility_public

ugc_visibility_friends_only

ugc_visibility_private

https://partner.steamgames.com/doc/api/ISteamRemoteStorage#ERemoteStoragePublishedFileVisibility

 UGC List Sort Order

These constants specify the sorting order of user published UGC lists from queries created

using one of the following functions:

steam_ugc_create_query_user

steam_ugc_create_query_user_ex

NOTE See Steam UGC Docs for more details.

UGC List Sort Order Constant Description

Returns items by creation date.

Descending - the newest items are

first

Returns items by creation date.

Ascending - the oldest items are first

Returns items by name

Returns the most recently updated

items first

Returns the most recently

subscribed items first

Returns the items with the more

recent score updates first

Returns the items that have been

reported for moderation

•

•

ugc_sortorder_CreationOrderDesc

ugc_sortorder_CreationOrderAsc

ugc_sortorder_TitleAsc

ugc_sortorder_LastUpdatedDesc

ugc_sortorder_SubscriptionDateDesc

ugc_sortorder_VoteScoreDesc

ugc_sortorder_ForModeration

https://partner.steamgames.com/doc/api/ISteamUGC#EUserUGCListSortOrder

 UGC List Type

These constants specify the type of published UGC list to obtain from queries created

using one of the following functions:

steam_ugc_create_query_user

steam_ugc_create_query_user_ex

NOTE See Steam UGC Docs for more details.

UGC List Type Constant Description

List of files the user has published

List of files the user has voted on. Includes both

VotedUp and VotedDown

List of files the user has voted up (restricted to

the current user only)

List of files the user has voted down (restricted

to the current user only)

DEPRECATED

List of files the user has favorited

List of files the user has subscribed to

(restricted to the current user only)

List of files the user has spent time in game

with

List of files the user is following updates for

•

•

ugc_list_Published

ugc_list_VotedOn

ugc_list_VotedUp

ugc_list_VotedDown

ugc_list_WillVoteLater

ugc_list_Favorited

ugc_list_Subscribed

ugc_list_UsedOrPlayed

ugc_list_Followed

https://partner.steamgames.com/doc/api/ISteamUGC#EUserUGCList

 UGC Match Type

These constants specify the types of UGC to obtain from queries created using one of the

following function:

steam_ugc_create_query_all

steam_ugc_create_query_all_ex

steam_ugc_create_query_user

steam_ugc_create_query_user_ex

NOTE See Steam UGC Docs for more details.

UGC Match Type Constant Description

Both microtransaction items and Ready-

to-use items

Microtransaction items

Regular in game items that players have

uploaded

Shared collections of UGC

Artwork which has been shared

Videos which have been shared

Screenshots which have been shared

Both web guides and integrated guides

Guides that are only available on the

steam community

Guides that you can use within your game

(like Dota 2's in game character guides)

Ready-to-use items and integrated guides

Controller Bindings which have been

shared

•

•

•

•

ugc_match_Items

ugc_match_Items_Mtx

ugc_match_Items_ReadyToUse

ugc_match_Collections

ugc_match_Artwork

ugc_match_Videos

ugc_match_Screenshots

ugc_match_AllGuides

ugc_match_WebGuides

ugc_match_IntegratedGuides

ugc_match_UsableInGame

ugc_match_ControllerBindings

https://partner.steamgames.com/doc/api/ISteamUGC#EUGCMatchingUGCType

 UGC Query Type (Sorting & Filtering)

These constants specify the sorting and filtering for queries across all available UGC, and

are to be used with the following functions:

steam_ugc_create_query_all

steam_ugc_create_query_all_ex

NOTE See Steam UGC Docs for more details.

UGC Query Type Constant Description

Sort by vote popularity all-time

Sort by publication date descending

Sort by date accepted (for mtx items)

Sort by vote popularity within the given

"trend" period (set

in steam_ugc_query_set_ranked_by_trend_days

Filter to items the user's friends have

favorited, sorted by publication date

descending

Filter to items created by friends, sorted by

publication date descending

Sort by report weight descending

Filter to items created by users that the

current user has followed, sorted by

publication date descending

Filtered to the user's voting queue

Sort by total # of votes ascending (used

internally for building the user's voting

queue)

Sort by number of votes up descending. Will

use the "trend" period if specified (set

in steam_ugc_query_set_ranked_by_trend_days

Sort by keyword text search relevancy

•

•

ugc_query_RankedByVote

ugc_query_RankedByPublicationDate

ugc_query_AcceptedForGameRankedByAcceptanceDate

ugc_query_RankedByTrend

ugc_query_FavoritedByFriendsRankedByPublicationDate

ugc_query_CreatedByFriendsRankedByPublicationDate

ugc_query_RankedByNumTimesReported

ugc_query_CreatedByFollowedUsersRankedByPublicationDate

ugc_query_NotYetRated

ugc_query_RankedByTotalVotesAsc

ugc_query_RankedByVotesUp

ugc_query_RankedByTextSearch

https://partner.steamgames.com/doc/api/ISteamUGC#EUGCQuery

	Steamworks Extension
	Guides
	Management
	Modules
	Setup Guide
	Migration Changes
	Changed Functions
	New Functions
	steam_init
	Syntax:
	Returns:

	steam_update
	Syntax:
	Returns:
	Example:

	steam_shutdown
	Syntax:
	Returns:

	General
	steam_initialised
	Syntax:
	Returns:
	Example:

	steam_stats_ready
	Syntax:
	Returns:
	Example:

	steam_get_app_id
	Syntax:
	Returns:
	Example:

	steam_get_user_account_id
	Syntax:
	Returns:
	Example:

	steam_get_user_steam_id
	Syntax:
	Returns:
	Example:

	steam_get_persona_name
	Syntax:
	Returns:
	Example:

	steam_get_user_persona_name
	Syntax:
	Returns:
	Triggers:
	Example:

	steam_is_user_logged_on
	Syntax:
	Returns:
	Example:

	steam_current_game_language
	Syntax:
	Returns:
	Example:

	steam_available_languages
	Syntax:
	Returns:
	Example:

	steam_is_subscribed
	Syntax:
	Returns:
	Example:

	steam_set_warning_message_hook
	Syntax:
	Returns:
	Example:

	Overlay
	Functions
	Constants
	steam_is_overlay_enabled
	Syntax:
	Returns:
	Example:

	steam_is_overlay_activated
	Syntax:
	Returns:
	Example:

	steam_activate_overlay
	Syntax:
	Returns:
	Example:

	steam_activate_overlay_browser
	Syntax:
	Returns:
	Example:

	steam_activate_overlay_store
	Syntax:
	Returns:
	Example:

	steam_activate_overlay_user
	Syntax:
	Returns:
	Example:

	Overlay Type
	Leaderboards
	Functions
	Data Types
	Constants
	steam_create_leaderboard
	Syntax:
	Returns:
	Triggers:
	Example:

	steam_upload_score
	Syntax:
	Returns:
	Triggers:
	Extended Example:

	steam_upload_score_ext
	Syntax:
	Returns:
	Triggers:
	Extended Example:

	steam_upload_score_buffer
	Syntax:
	Returns:
	Triggers:
	Extended Example:

	steam_upload_score_buffer_ext
	Syntax:
	Returns:
	Triggers:
	Extended Example:

	steam_download_scores
	Syntax:
	Returns:
	Triggers:
	Extended Example:

	steam_download_scores_around_user
	Syntax:
	Returns:
	Triggers:
	Example:

	steam_download_friends_scores
	Syntax:
	Returns:
	Triggers:
	Example:

	Leaderboard Entry
	Leaderboard Display Type
	Leaderboard Sort Order
	Stats and Achievements
	Achievements
	Statistics Functions
	Debug Functions
	steam_set_achievement
	Syntax:
	Returns:
	Example:

	steam_get_achievement
	Syntax:
	Returns:
	Example:

	steam_clear_achievement
	Syntax:
	Returns:
	Example:

	steam_set_stat_int
	Syntax:
	Returns:
	Example:

	steam_set_stat_float
	Syntax:
	Returns:
	Example:

	steam_set_stat_avg_rate
	Syntax:
	Returns:
	Extended Example:

	steam_get_stat_int
	Syntax:
	Returns:
	Example:

	steam_get_stat_float
	Syntax:
	Returns:
	Example:

	steam_get_stat_avg_rate
	Syntax:
	Returns:
	Example:

	steam_reset_all_stats
	Syntax:
	Returns:
	Example:

	steam_reset_all_stats_achievements
	Syntax:
	Returns:
	Example:

	Cloud
	steam_is_cloud_enabled_for_app
	Syntax:
	Returns:
	Example:

	steam_is_cloud_enabled_for_account
	Syntax:
	Returns:
	Example:

	steam_get_quota_total
	Syntax:
	Returns:
	Example:

	steam_get_quota_free
	Syntax:
	Returns:
	Example:

	steam_file_exists
	Syntax:
	Returns:
	Example:

	steam_file_size
	Syntax:
	Returns:
	Example:

	steam_file_persisted
	Syntax:
	Returns:
	Example:

	steam_file_write
	Syntax:
	Returns:
	Example:

	steam_file_write_file
	Syntax:
	Returns:
	Example:

	steam_file_read
	Syntax:
	Returns:
	Example:

	steam_file_share
	Syntax:
	Returns:
	Example:

	steam_file_delete
	Syntax:
	Returns:
	Example:

	DLC
	steam_user_owns_dlc
	Syntax:
	Returns:
	Example:

	steam_user_installed_dlc
	Syntax:
	Returns:
	Example:

	UGC
	Creating And Editing Content
	Consuming Content
	Querying Content
	Constants
	steam_is_screenshot_requested
	Syntax:
	Returns:
	Example:

	steam_send_screenshot
	Syntax:
	Returns:
	Example:

	steam_ugc_create_item
	Syntax:
	Returns:
	Triggers:
	Extended Example:

	steam_ugc_delete_item
	Syntax:
	Returns:
	Triggers:
	Example:

	steam_ugc_start_item_update
	Syntax:
	Returns:
	Example:

	steam_ugc_set_item_title
	Syntax:
	Returns:
	Example:

	steam_ugc_set_item_description
	Syntax:
	Returns:
	Example:

	steam_ugc_set_item_visibility
	Syntax:
	Returns:
	Example:

	steam_ugc_set_item_tags
	Syntax:
	Returns:
	Example:

	steam_ugc_set_item_content
	Syntax:
	Returns:
	Example:

	steam_ugc_set_item_preview
	Syntax:
	Returns:
	Example:

	steam_ugc_submit_item_update
	Syntax:
	Returns:
	Triggers:
	Example:

	steam_ugc_get_item_update_progress
	Syntax:
	Returns:
	Example:

	steam_ugc_subscribe_item
	Syntax:
	Returns:
	Triggers:
	Example:

	steam_ugc_unsubscribe_item
	Syntax:
	Returns:
	Triggers:
	Example:

	steam_ugc_num_subscribed_items
	Syntax:
	Returns:
	Example:

	steam_ugc_get_subscribed_items
	Syntax:
	Returns:
	Example:

	steam_ugc_get_item_install_info
	Syntax:
	Returns:
	Example:

	steam_ugc_get_item_update_info
	Syntax:
	Returns:
	Example:

	steam_ugc_request_item_details
	Syntax:
	Returns:
	Triggers:
	Extended Example:

	steam_ugc_create_query_user
	Syntax:
	Returns:
	Example:

	steam_ugc_create_query_user_ex
	Syntax:
	Returns:
	Example:

	steam_ugc_create_query_all
	Syntax:
	Returns:
	Example:

	steam_ugc_create_query_all_ex
	Syntax:
	Returns:
	Example:

	steam_ugc_query_set_cloud_filename_filter
	Syntax:
	Returns:
	Example:

	steam_ugc_query_set_match_any_tag
	Syntax:
	Returns:
	Example:

	steam_ugc_query_set_search_text
	Syntax:
	Returns:
	Example:

	steam_ugc_query_set_ranked_by_trend_days
	Syntax:
	Returns:
	Example:

	steam_ugc_query_add_required_tag
	Syntax:
	Returns:
	Example:

	steam_ugc_query_add_excluded_tag
	Syntax:
	Returns:
	Example:

	steam_ugc_query_set_return_long_description
	Syntax:
	Returns:
	Example:

	steam_ugc_query_set_return_total_only
	Syntax:
	Returns:
	Example:

	steam_ugc_query_set_allow_cached_response
	Syntax:
	Returns:
	Example:

	steam_ugc_send_query
	Syntax:
	Returns:
	Triggers:
	Example:

	steam_ugc_download
	Syntax:
	Returns:
	Triggers:
	Extended Example:

	UGC File Type
	UGC File Visibility
	UGC List Sort Order
	UGC List Type
	UGC Match Type
	UGC Query Type (Sorting & Filtering)

