

iOS & Android Ads Extension for GameMaker Studio

ironSource Extension for
GameMaker Studio

Documentation

Documentation ​v2.5.0​, released with Extension ​v2.5.0
Valid unless newer revision of the documentation is specified on the

Marketplace asset page.
All updated documentation versions bundled in extension package.

Please read this documentation before sending a support request.
Most, if not all common issues are already addressed here.

© 2020

1

iOS & Android Ads Extension for GameMaker Studio

Table of Contents

Requirements 3

Quick Start 4

Extension Documentation 11

© 2020

2

iOS & Android Ads Extension for GameMaker Studio

I. Requirements

ironSource for GameMaker Studio requires either the Android or iOS
Export Module(s), depending on your use case.

Below you can find a list of the software and tools that the extension
has been confirmed as working without any issues:

● Game Maker Studio 2 runtime v2.2.5.378 with Android or iOS
export module, under both the VM (non-YYC) and YYC targets

● For Android:
○ ironSource Android SDK 6.10.1
○ Android Studio-bundled OpenJDK
○ Android NDK (side by side) installation in Android Studio
○ Target SDK 28
○ Min. SDK 26
○ Compile SDK 28
○ Build Tools 28.0.0
○ Support Library 28.0.0
○ Target architectures tested: ARMv7, x86, ARM64, x86_64

● For iOS:
○ ironSource iOS SDK 6.8.1
○ macOS High Sierra (10.13.4)
○ XCode 11, New build system

The list above is for orientation purposes only; the project should

work just fine with various other OS, and tools versions, as long as they are
not too out-of-date.

© 2020

3

iOS & Android Ads Extension for GameMaker Studio

II. Quick Start

Before you can get up and running, there are a few boxes you need
to tick:

ironSource setup

- If you’re starting completely fresh, head over to ​http://ironsrc.com
and create an account

- Once you have set up your account, it’s time to create an
application on this page: ​https://platform.ironsrc.com/partners/applications

- From the same page specified above, you can grab your
application’s ​APP KEY​. This is what we will use to initialize the extension
inside GameMaker Studio

Android setup

- The ironSource extension for GameMaker Studio ​already includes
a directive to compile Google Play Services!​ In case you are using
either the official ​GooglePlayServicesExtension​ or ​GoogleAnalyticsExt
please make sure to ​delete ​any conflicting code from “Inject to
AndroidManifest.xml” and “Inject to Gradle dependencies” in any of the
aforementioned extension’s ​Android ​tab in its ​Properties ​window, in order
to avoid compilation errors!

- ​Please check the ​Gradle​ and ​AndroidManifest inject​ settings​ in
order to enable Google AdMob, as it requires manual entry of your app ID.
After entering the app ID, please uncomment the corresponding sections.

- In case you encounter a memory error while compiling, the issue
can be fixed by going into ​Preferences -> Android tab -> SDK tab -> Java
Max Heap Size (GB)​ and setting it to 4GB.

© 2020

4

http://ironsrc.com/
https://platform.ironsrc.com/partners/applications

iOS & Android Ads Extension for GameMaker Studio

iOS setup
- The iOS 3rd party Ad network adapters are not bundled with the

extension package downloaded from the YoYo Marketplace, due to the
size limit. You can find the updated frameworks at the following link (current
files version: ​v2.5.0​):
https://mega.nz/file/i7BRmKiJ#vxNIYTN8GFT_ugaEWRObJ6FOIEAlSpcqjo
kB8tE82Sc

Extract the archive. You will end up with 2 zip files:
● “Copy to iOSSourceFromMac.zip”

○ Extract the files, and copy the ​contents​ of the archive
into the iOSSourceFromMac folder of the extension. You
should end up with a bunch of ​.framework.zip​ files.

● “Copy to XCode Frameworks.zip”
○ Copy this archive ​to your Mac​ after compiling your GM

project.
○ Extract the files, then copy them onto your generated

XCode project inside the Frameworks project directory, as
shown in the image below. The reason you are required
to do this is because of a ​GM bug​ ​that does not allow
*.bundle files to go through the IDE nor the asset
compiler, even though the IDE clearly states this is (and
should be, really) supported. The bug has been reported
and should get fixed in the following hundreds of weeks.

© 2020

5

https://mega.nz/file/i7BRmKiJ#vxNIYTN8GFT_ugaEWRObJ6FOIEAlSpcqjokB8tE82Sc
https://mega.nz/file/i7BRmKiJ#vxNIYTN8GFT_ugaEWRObJ6FOIEAlSpcqjokB8tE82Sc

iOS & Android Ads Extension for GameMaker Studio

- ​If you are using Google AdMob​, you need to ​manually configure
your AdMob App ID​. In order to do so, navigate to the Extension’s iOS
properties and change the Info.plist value accordingly. If you skip this step,
your project will compile, but it will ​instantly crash!

- ​If you are using the Facebook Extension, your project will not

build in conjunction with this extension without a few modifications!
This is because the Facebook Extension is (​surprise, surprise!​)
terribly outdated​. In order to make it work, please follow the steps
below:

1. Go to iOSSourceFromMac inside the FacebookExtension2
directory, and ​delete​ everything that is not “Bolts.framework” -
that should be the only file that remains in the folder. The
ironSource extension ​already​ includes up-to-date versions of
the Facebook required frameworks which you just deleted, in
order to mitigate this issue

2. Go to the iOSSource directory of FacebookExtension2, and
open up ​FacebookExtension2.mm

a. On line 715, ​replace
FBSDKLoginManagerRequestTokenHandler ​with
LoginManagerLoginResultBlock

b. Around line 218, ​replace all instances of
FBSDKLoginBehavior[SOMETHING] ​with
FBSDKLoginBehaviorBrowser​. Refer to the image on the
next page for help.

© 2020

6

iOS & Android Ads Extension for GameMaker Studio

3. Open up ​FacebookExtension2.h

a. On line 82, ​replace
FBSDKLoginManagerRequestTokenHandler ​with
LoginManagerLoginResultBlock

These fixes should make FacebookExtension2 compile together with

the ironSource extension just fine. This has nothing to do with the
ironSource extension itself - if anything, the only “problem” with our
wrapper extension is that we ​actually updated the SDKs​. We are also not
able to provide you directly with the patched FacebookExtension2, because
of legal mumbo jumbo ¯_(ツ)_/¯

The only thing the community can do in order to avoid issues like
these is leave feedback regarding the issues on the Facebook Extension
page.

© 2020

7

iOS & Android Ads Extension for GameMaker Studio

- If you use any other extension that has a
LSApplicationQueriesSchemes plist key, read this!

Similar to Android’s ​Manifest​ files, XCode uses ​plist​ files (“property
lists”). You can find the setting for injecting custom keys in the plist file
inside the ​Extension package properties -> iOS tab​. If you use multiple
extensions that inject the same keys in the plist file, ​build errors will occur
due to duplicate keys​. A notable example is the official Facebook
extension, which uses the same “LSApplicationQueriesSchemes”
dictionary that the ironSource adapter uses. If you do use the Facebook
extension, please go to ​Facebook Extension package properties -> iOS tab
-> Inject to Info.plist​ and ​delete​ everything.

Then, go to ​ironSource Extension package properties -> iOS tab ->
Inject to Info.plist​ and locate the following block of code:

<!-- START Schemes for ironSource WITHOUT Facebook -->

<key>LSApplicationQueriesSchemes</key>

<array>

<string>fb</string>

<string>instagram</string>

<string>tumblr</string>

<string>twitter</string>

</array>

<!-- END App Queries Schemes -->

Replace that snippet of code with the following:

<!-- START Schemes for ironSource + Facebook -->

<key>LSApplicationQueriesSchemes</key>

<array>

<string>fb</string>

<string>instagram</string>

<string>tumblr</string>

<string>twitter</string>

<string>fbapi</string>

© 2020

8

iOS & Android Ads Extension for GameMaker Studio

<string>fb-messenger-api</string>

<string>fbauth2</string>

<string>fbshareextension</string>

</array>

<!-- END App Queries Schemes -->

The code shown here in ​purple​ represents the values that the
Facebook Extension itself had in its LSApplicationQueriesSchemes
section. This type or merging should be done for ​any​ extension that
already has the same key in its Info.plist file, and is a limitation of
GameMaker itself, as it does not merge any keys when injecting to the plist
file (it just copy-pastes everything you give it, which is why duplicates in
extensions will result in duplicates inside the plist file itself, and thus errors).

- Unlike on Android, iOS ads will ​not​ pause the game! You need to
handle this inside the game logic by listening for the “​adOpened​”,
“​adClosed​”, “​rewardOpened​”, “​rewardClosed​”, “​offerwallOpened​”,
“​offerwallClosed​” events. If you do not handle those cases, not only will
the game continue to run as if nothing is displaying over it, but some ad
SDKs cause odd behaviour, where the game ​still​ receives inputs when you
tap over ad content, even though it is displaying over the game.

- Lastly, if using the Google Play Services, there are some simple
fixes to be done in order to ensure you don’t get any errors:

● Right-click on ​GooglePlayServicesExtension -> Open in
Explorer​. Go to the ​GooglePlayServicesExtension ​folder, and
delete both the ​iOSSource​ and ​iOSSourceFromMac​ folders.

● Right-click on ​GooglePlayServicesExtension -> Properties ->
iOS tab -> ​delete everything inside System Frameworks and
3rd Party Frameworks.

○ Inside the same window, under the ​General​ tab, uncheck
both ​iOS​ and ​iOS(YYC)​ in the targets list

© 2020

9

iOS & Android Ads Extension for GameMaker Studio

● Expand ​GooglePlayServicesExtension​ by clicking on the + sign
to the left, and double-click on ​GoogleMobileAds.ext​. At the
bottom list (“Copies To”), uncheck both ​iOS​ and ​iOS(YYC)

Whew, ​done​! We are now ready to start using ironSource in our
GameMaker project!

The sample project

These steps are here to help devs accommodate their existing
projects in order to be able to use this extension. An already-set-up
example is provided inside the extension itself, which you can use in order
to test out the features.

In order to try out the sample project, simply ​Import all assets​ from
the extension package into an ​empty​ project. Then:

● If targeting iOS, download the required frameworks from the link
specified in the ​iOS setup​ section

● Set your App ID inside ​obj_ironSrc​’s ​Create ​event

© 2020

10

iOS & Android Ads Extension for GameMaker Studio

III. Extension Documentation
The extension is made to be as easy to use as possible whilst still

being as packed with features as it can get. Inside you will find support for
all​ of the ironSource callbacks, along with some helper functions/fixes for
GM to make our life easier.

Although ironSource provides many callbacks for events regarding
various ad formats, you do not ​really​ need to use all of them. However, for
the advanced user’s convenience, everything that ironSource exposes to
native Java and Objective-C, the extension forwards to GameMaker.

The minimal approach

We’ll now go through all essential functions for working with all kinds
of ads, and their specific callbacks. Everything documented in here is also
presented in the sample project, so be sure to check it out!

GDPR consent

Users living in the E.U. now have to give consent to process their
data in case they want to see more tailored ads. In the case of those users,
the programmer of the application must tell ironSource about their explicit
consent before initialization. This is done with the following function:

ironSrc_setConsent(​consent flag​);
Tells ironSource whether it can serve tailored ads
consent flag​ - either true or false
This function should be called before initialization of the ironSource
extension. It tells ironSource whether or not it can process the user’s
GAID/IDFA (Advertiser IDs) in order to show them more relevant ads. If the
user is outside of the EU, just call this function with the flag set to true. For

© 2020

11

iOS & Android Ads Extension for GameMaker Studio

EU citizens, you must show a dialogue where you ask the user whether or
not they wish to share their info with the Ad providers in order to get ads
better targeted to them. You then call this function with the appropriate
value (true, or false). You should also store the user’s answer, so that on
subsequent runs, you just call the function with the last answer stored,
instead of asking the user over and over on every run of the app.
It is also recommended that you implement a reliable way of detecting
whether or not the user is from the EU (the sample project includes a
rudimentary check script involving the country code reported by the
operating system).
For more information about mediating through ironSource vs the EU
GDPR, check out
https://developers.ironsrc.com/ironsource-mobile/general/making-sure-your
e-compliant-post-gdpr/#step-2

Initialization

Once you’ve got your appKey and called the GDPR-compliance
function, it’s time to initialize so that we can start working with ads. To do
that, just call:

ironSrc_init(​appKey​);
Initializes ironSource

Banner Ads

ironSrc_bannerDefaultPosition(​pos​);
Sets the position where a banner will be created.
Argument should be BANNER_BOTTOM or BANNER_TOP.
Call this ​before ​creating a new banner!

© 2020

12

https://developers.ironsrc.com/ironsource-mobile/general/making-sure-youre-compliant-post-gdpr/#step-2
https://developers.ironsrc.com/ironsource-mobile/general/making-sure-youre-compliant-post-gdpr/#step-2

iOS & Android Ads Extension for GameMaker Studio

In case you need to create a banner in the other screen position, first
remove​ the current banner, then call this function to set up the position,
then create a new banner.

ironSrc_getBannerDefaultPosition();

Returns BANNER_BOTTOM or BANNER_TOP, as set previously. Default
value is BANNER_BOTTOM.

ironSrc_createBanner();

Creates a banner ad view and loads the ad content

ironSrc_hideBanner();

Hides a banner ad view, but does not remove it
This function is very useful in situations where you need to not display the
banner for a few screens, but then have it back up really fast
In order to unhide the banner, just call ​ironSrc_createBanner();​ ​again
That will not create a new banner, instead, it will bring back the previously
hidden one (provided that a banner had been created and hidden)

ironSrc_removeBanner();

Destroys the banner ad view
Calling ​ironSrc_createBanner();​ ​after this will create a completely new
banner ad

ironSrc_bannerWidth();

Gets the banner width (if one exists), in ​screen pixels

ironSrc_bannerHeight();

Gets the banner height (if one exists), in ​screen pixels

© 2020

13

iOS & Android Ads Extension for GameMaker Studio

ironSrc_createBannerWithOffset(​offset​);
Same as the default banner creation function, but it makes the banner
“float” from the bottom of the screen at exactly ​offset​ ​pixels.
This function is ​iOS ONLY​ and is useful for devices such as the iPhone X,
where you may want the banner to not be exactly stuck to the bottom
bezel.
Please note that for this to work properly, you need to ​not​ already have a
banner on-screen, or destroy the previous banner!

Full Screen Ads

ironSrc_isInterstitialReady();

Returns whether or not an Interstitial Ad can be displayed

ironSrc_isRewardedVideoAvailable();

Returns whether or not an Rewarded Video can be displayed

ironSrc_isOfferwallAvailable();

Returns whether or not an Offer Wall can be displayed

ironSrc_loadInterstitial();

The extension autoloads ad content. However, if Interstitials are not
loading, you may explicitly ask for one by using this function

ironSrc_showInterstitial();

Displays an Interstitial Ad

ironSrc_showRewardedVideo();

Displays a Rewarded Video

© 2020

14

iOS & Android Ads Extension for GameMaker Studio

ironSrc_showOfferwall();

Displays an Offer Wall

Debugging

ironSrc_setDebug(​enable debugging?​);
Configures the extension to enable or disable detailed reporting of
mediated SDKs information in the application logs. Useful for tracking down
issues with SDK configurations.

© 2020

15

iOS & Android Ads Extension for GameMaker Studio

Callbacks / Events

We will now cover the ​essential ​events/callbacks that the ironSource
extension calls inside the a GameMaker application. These events should
be everything that is needed to build the ad-related logic into your game.
Later on in the document, we will also cover the extra events that
ironSource provides for certain situations.

The example project responds to all events created by the ironSource
extension. As for most extensions, asynchronous events are handled in the
not-so-appropriately-named “​Social​” event. An ironSource event is
presented in the form of a ​Social​ event with a field named “​type” ​which is
always equal to “​ironSrc​”. The project shows how you can use the async
events in 2 ways:

● By directly reading from the ​async_load​ map inside of the
Social ​event (implemented inside ​obj_ironSrc​ in the sample
project). You can differentiate between all of the ironSource
events by reading the “​id​” field, as shown in the project. Bear in
mind to check whether or not the “​type​” field is set to “​ironSrc​”
first

● By implementing the logic inside of ​callback functions​ (which
in the sample project, are called by ​obj_ironSrc​, which
forwards the ​async_load​ data to function calls). The sample
callbacks are located inside the ​Scripts -> Callbacks​ folder

You are free to use any of the two approaches, either directly

managing events in the Social async event, or by relaying the data to
callback scripts.

© 2020

16

iOS & Android Ads Extension for GameMaker Studio

We will now go through the essential events and their callbacks,
along with any extra data that they might expose:

ironSource Event ID (“id” field) Corresponding Callback script
(as implemented in the sample project)

bannerLoaded
Indicates that a Banner has been loaded. ironSrc_bannerLoaded()

bannerLoadFailed
Indicates that a Banner couldn’t load. ironSrc_bannerFailedToLoad()

bannerClicked
Indicates that the user has tapped the

Banner.
ironSrc_bannerClicked()

adLoaded
Indicates an Interstitial ad has loaded. ironSrc_adLoaded()

adClicked
Indicates that the user has tapped the

call-to-action button inside of an Interstitial.
ironSrc_adClicked()

© 2020

17

iOS & Android Ads Extension for GameMaker Studio

adLoadFailed
Indicates that an Interstitial ad couldn’t load. ironSrc_adFailedToLoad()

adOpened
Indicates that an Interstitial ad has been

opened on the user’s screen.
This event is important for properly pausing

the game when showing ads!

ironSrc_adOpened()

adClosed
Indicates that the currently opened Interstitial

ad has been closed.
This event is important for unpausing the

game when closing ads!

ironSrc_adClosed()

adShowFailed
An Interstitial ad couldn’t be shown. ironSrc_adFailedToShow()

rewardAvailable
The game is ready to show a Rewarded ad. ironSrc_rewardAvailable()

rewardUnavailable
There is no Rewarded adready, so the game

can’t show one.
ironSrc_rewardUnavailable()

© 2020

18

iOS & Android Ads Extension for GameMaker Studio

rewardOpened
Indicates that a Rewarded ad has been

opened on the user’s screen.
This event is important for properly pausing

the game when showing ads!

ironSrc_rewardOpened()

rewardClosed
Indicates that a Rewarded ad has been

closed.
This event is important for unpausing the

game when closing ads!

ironSrc_rewardClosed()

rewardReceived
The Rewarded Ad objective has been

passed and the game should receive the
reward.

Additional parameters:
“​reward​” = Name of the reward
“​amount​” = Number of “reward” to receive
in-game

These fields are configurable via the
ironSource control panel. This mechanism
allows for “dynamic rewards”, where you can
configure what and how much of something
your users get without needing to update the
game each time you make a change.

ironSrc_rewardReceived(
 reward name = ​string​,
 reward amount = ​real
)

Additional parameters documentation
presented on the left.

rewardShowFailed
A Rewarded ad couldn’t be shown.

ironSrc_rewardFailedToShow()

© 2020

19

iOS & Android Ads Extension for GameMaker Studio

rewardClicked
The user has tapped the call-to-action button

inside of the Rewarded ad.

Additional parameters:
“​reward​” = Name of the reward
“​amount​” = Number of “reward” to receive
in-game

These fields work in the ​same way​ as for
rewardReceived​, ​BUT ​this event only
triggers when the user actually ​taps​ the
button at the end of the ad! Use this if you
only want to reward the user when they
actually press that button.

ironSrc_rewardClicked(
 reward name = ​string​,
 reward amount = ​real
)

offerwallAvailable
The game is ready to display an Offer Wall. ironSrc_offerwallAvailable()

offerwallUnavailable
Offer Walls are currently unavailable and the

game cannot show one.
ironSrc_offerwallUnavailable()

offerwallOpened
An Offer Wall ad has been opened.

This event is important for properly pausing
the game when showing ads!

ironSrc_offerwallOpened()

offerwallClosed
The Offer Wall ad has been closed by the

user.
This event is important for unpausing the

game when closing ads!

ironSrc_offerwallClosed()

© 2020

20

iOS & Android Ads Extension for GameMaker Studio

offerwallShowFailed
An Offer Wall couldn’t be shown. ironSrc_offerwallFailedToShow()

offerwallCreditFailed
The Offer Wall failed to credit the user. ironSrc_offerwallFailedToCredit()

offerwallCredited
An Offer Wall offer has been completed and

the game should now reward the user.

Additional parameters:
“​credits​” = The amount of [your in-game
reward] to reward
“​totalCredits​” = Total “credits” earned by the
user from Offer Walls
“​isTotal​” = true or false. In some cases,
ironSource can't tell how many credits you've
got in THIS session. In those cases, you
won't be able to increment the in-game
currency; rather, ironSource sets both the
credits and total credits fields to the same
value, and also notifies us via a flag. When
this occurs, instead of incrementing the
currency, we just set the value to what
ironSource tells us in any of the fields.
We only need to do this if the "isTotal" flag is
set to TRUE.

ironSrc_offerwallCredited(
 ​credits = ​real​,
 ​totalCredits = ​real​,
 ​isTotal = ​boolean
)

Additional parameters documentation
presented on the left.

© 2020

21

iOS & Android Ads Extension for GameMaker Studio

As mentioned in the table, it is very important to take ...​Opened​ and
...​Closed​ events into accounts in order to implement a ​pause​ mechanic so
that the game does not:

● Continue playing sounds / running gameplay mechanics under
the ad

● Receive touch inputs ​through​ the ads themselves (as noted
with some of the mediated ad networks on iOS)

In the following table, we will go through ​optional​ events that are not

100% necessary for implementing the game logic around ads, but are nice
to have for specific situation that the developer may encounter.

Optional callbacks table:

ironSource Event ID (“id” field) Corresponding Callback script​ ​(as
implemented in the sample project)

bannerPresented
Indicates that a Banner ad has appeared

on screen. This is called after
bannerOpened, and after every refresh of

the banner ad.

ironSrc_bannerPresented()

ironSrc_bannerDismissed
Indicates that a banner has been

dismissed (i.e. disappeared from the
banner view). This does not necessarily
mean that the banner ad view has been
closed, just that the current banner ad

has ended.

ironSrc_bannerDismissed()

ironSrc_bannerLeftApp
Indicates that a banner has left the

application. This event does not get called
for all Banner ad adapters.

ironSrc_bannerLeftApp()

© 2020

22

iOS & Android Ads Extension for GameMaker Studio

adShown
Called when an Interstitial Ad is displayed

on the screen. You can consider this to
be a redundant event for the more reliable

adOpened.

ironSrc_adShown()

rewardStarted
Indicates that a Rewarded ad has begun

playing back content on the user’s device.
ironSrc_rewardStarted()

rewardEnded
Called when a Rewarded ad has stopped

playing back content.
ironSrc_rewardEnded()

It is worth noting that the ​...Started​ and ​...Ended​ events/callbacks

are ​not​ a reliable replacement for the ​...Opened​ and ​...Closed
events/callbacks! These ​optional​ events are only provided inside the
GameMaker extension for the advanced programmer’s convenience. In
order to provide as much functionality as possible, no assumptions have
been made regarding what is and what isn’t useful out of the ironSource
SDK. As such, all possible callbacks have been implemented in this
extension.

Important notice
GameMaker “​likes​” to sometimes effectively ​lose​ the ​async_load

data ​before​ the event actually fires from an extension. This will effectively
crash the game. In order to go around this issue, we check whether or not
async_load actually exists​ before parsing it. Please check the ​sample
project​ for an example (inside ​obj_ironSrc​’s ​Social​ event).

© 2020

23

iOS & Android Ads Extension for GameMaker Studio

Support

For any issues that might arise when using the extension or any
errors in the documentation, do not hesitate to report it on the Marketplace
page! We’re very responsive to feedback and wish to provide our
customers with the best experience as possible when it comes to using our
assets.

Happy coding!

© 2020

24

